Microwave Cavity with Controllable Temperature for In Vitro Hyperthermia Investigations
Asimina Kiourti, Mingrui Sun, Xiaoming He, John L. Volakis
J. Electromagn. Eng. Sci. 2014;14(3):267-272.     DOI: https://doi.org/10.5515/JKIEES.2014.14.3.267
Citations to this article as recorded by Crossref logo
Interaction of microwave and nanomaterials for thermoresponsive drug delivery and hyperthermal cancer therapy
Shazid Md. Sharker
Inorganic Chemistry Communications.2023; 156: 111152.     CrossRef
A Review of In Vitro Instrumentation Platforms for Evaluating Thermal Therapies in Experimental Cell Culture Models
Faraz Chamani, India Barnett, Marla Pyle, Tej Shrestha, Punit Prakash
Critical Reviews in Biomedical Engineering.2022; 50(2): 39.     CrossRef
Nanomaterials responding to microwaves: an emerging field for imaging and therapy
Annah J. Wilson, Mohammed Rahman, Panagiotis Kosmas, Maya Thanou
Nanoscale Advances.2021; 3(12): 3417.     CrossRef
Microfluidic High-Q Circular Substrate-Integrated Waveguide (SIW) Cavity for Radio Frequency (RF) Chemical Liquid Sensing
Muhammad Memon, Sungjoon Lim
Sensors.2018; 18(1): 143.     CrossRef
Recent advances in carbon based nanosystems for cancer theranostics
Shine Augustine, Jay Singh, Manish Srivastava, Monica Sharma, Asmita Das, Bansi D. Malhotra
Biomaterials Science.2017; 5(5): 901.     CrossRef
Enhanced Microwave Hyperthermia of Cancer Cells with Fullerene
Mingrui Sun, Asimina Kiourti, Hai Wang, Shuting Zhao, Gang Zhao, Xiongbin Lu, John L. Volakis, Xiaoming He
Molecular Pharmaceutics.2016; 13(7): 2184.     CrossRef
Microwave Chemical Sensor Using Substrate-Integrated-Waveguide Cavity
Muhammad Memon, Sungjoon Lim
Sensors.2016; 16(11): 1829.     CrossRef