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I. INTRODUCTION 

Electromagnetic surveying systems are widely used for envi-

ronmental and engineering studies [1, 2]. In the electromagnet-

ic method, a source is used to produce an incident wave, where 

interaction between the wave and the investigated object leads 

to generation of a scattered wave. Data are gathered at the re-

ceiver to obtain information to predict the physical properties of 

the investigated configuration through solving the inverse scat-

tering problem [3]. 

Inverse scattering problems have several applications in re-

search areas such as archeology, geophysical prospecting, and 

medical imaging [4, 5]. These types of problems suffer from a 

limited amount of information about the variables to be esti-

mated [6, 7]. However, solutions to such problems must be ac-

curate to get a reasonable estimate, and a reasonable estimate is  

mainly affected by the efficiency of the forward problem formu-

lation. Several techniques are available for forward problem 

formulation, such as the finite-difference and finite-element 

methods [8, 9] and the boundary element method [10]. How-

ever, such conventional numerical methods have limitations, 

including numerical polarization and dispersion [11, 12], inac-

curate representation of decaying fields, and integrals with sin-

gularity or hyper-singularity [13, 14]. Thus, one of the objec-

tives of this paper is to provide an accurate forward modeling 

method that overcomes some of these limitations and difficul-

ties. 

Another objective of this paper is to develop an inversion 

methodology that benefits from the optimal setting of the for-

ward formulation to solve both two- and three-dimensional (2D 

and 3D) electromagnetic inverse scattering problems in inho-

mogeneous media. In our approach, the inverse problem is 

treated as a sampling problem using the simulated annealing 
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method without affecting the nonlinear nature of the problem. 

Moreover, several simulated annealing algorithms were de-

signed and compared with different case studies to ensure the 

approach’s efficiency in terms of estimation error. 

II. FORWARD FORMULATION  

An efficient forward algorithm for calculating scattered fields 

from input model parameters (i.e., permittivity and conductivity) 

is required to solve an inversion problem [8]. Most inversion 

approaches have a link between the forward and inverse prob-

lems in order to evaluate the fitness of the predicted parameters 

for the proposed model [9]. 

Forward problem techniques are always based on a previously 

selected configuration, and the effectiveness of the forward con-

figuration strongly influences the efficiency of the inversion ap-

proach. Approaches used for modeling electromagnetic forward 

problems fall into two main categories: mesh-based and mesh-

less approaches [15]. 

Most commercial simulators use mesh-based approaches to 

solve forward problems. Mesh-based approaches have several 

limitations because they must truncate the domain of computa-

tion, which introduces unphysical nonreflecting boundaries [16, 

17]. They also create a large grid with too many cells to get an 

accurate solution, especially if the structure is lossy and contain 

evanescent fields [18]. These limitations mean that these ap-

proaches suffer from long simulation times [19]. 

Meshless approaches can be used for the forward formulation 

of Maxwell’s equations through the expansion of fields using 

Fourier transform or Gauss-Hermite functions [20]. However, 

these approaches involve many integrals that have to be evaluat-

ed numerically, so they are computationally expensive. In this 

paper, a meshless approach will be adopted that avoids such 

integrals; therefore, reducing the computational complexity of 

the solution, and that locates accurate estimates of the model 

with a reasonable error margin. 
 

1. Two-Dimensional Problem  

In this paper, we will consider the 2D model shown in Fig. 1, 

where an object of permittivity 𝜖  and conductivity 𝜎  is 
 

 

Fig. 1. General model of the 2D electromagnetic inverse scattering 

problem considered in this paper. 

buried inside a slab with permittivity 𝜖  and conductivity 𝜎 . 

For the 2D problem, the electric polarization current can be 

represented as [21]: 
 

𝐽 𝑥, 𝑧 𝑄 𝑥, 𝑧 𝐸 𝑥, 𝑧 𝐺 𝑥, 𝑧, 𝑥 , 𝑧  𝐽 𝑥 , 𝑧  𝑑𝑧 𝑑𝑥 , 

∞ 𝑥, 𝑥 ∞, 𝐿 𝑧, 𝑧 0 

(1) 
 

where 𝐸 𝑥, 𝑧  is the incident electric field, 𝑥,  𝑧  is the Car-

tesian coordinate of an observation point, (𝑥 ,  𝑧 ) is the Carte-

sian coordinate of the polarization current, and L is the slab 

thickness.  𝐺  𝐻 𝑥, 𝑧, 𝑥 , 𝑧 ,  where 𝐻 .  is the 

Hankel function of the first type and zeroth order. 𝑄 𝑥, 𝑧  can 

be expanded to be written as [22]: 
 

            𝑄 𝑥, 𝑧 𝑖𝑤𝜇 𝑄 𝑥, 𝑧 ,              (2) 
 

where 
 

    𝑄 𝑥, 𝑧 𝑖𝑤 𝜖 𝑥, 𝑧 𝜖  𝜎 𝑥, 𝑧      (3) 
 

For the 2D case of one-layer slab with an object inside it, we 

can write 𝑄 𝑥, 𝑧  as: 
 

 𝑄 𝑥, 𝑧 𝑄 𝑠𝑙𝑎𝑏 𝑄 𝑠𝑙𝑎𝑏 𝑄 𝑜𝑏𝑗𝑒𝑐𝑡 Ω 𝑠     (4) 
 

where Ω 𝑠  is the indicator to classify the object from the slab. 

Ω 𝑠 0 indicates the slab while Ω 𝑠 1 indicates the 

object, and 
 

            𝑄 𝑠𝑙𝑎𝑏 𝑘 𝑘                 (5) 

           𝑄 𝑜𝑏𝑗𝑒𝑐𝑡 𝑘 𝑘               (6) 
 

where 𝑘 𝑤 𝜇 𝜖  is the background medium. Hence, 
 

  𝑘 𝑥, 𝑧 𝑤 𝜇 𝜖 𝜖 𝑠𝑙𝑎𝑏 𝑖𝑤𝜇 𝜎 𝑠𝑙𝑎𝑏      (7) 

𝑘 𝑥, 𝑧 𝑤 𝜇 𝜖 𝜖 𝑜𝑏𝑗𝑒𝑐𝑡 𝑖𝑤𝜇 𝜎 𝑜𝑏𝑗𝑒𝑐𝑡 .  (8) 
 

One approach to solve this problem is to use Fourier trans-

form and 𝜓  orthogonality properties [23], but by this repre-

sentation, overlap integrals in 𝑘  and n are required. These 

integrals have a very high computational cost. To avoid this cost, 

we propose another approach that avoids all overlap integrals: 

the point-by-point approach. In this approach, we get the scat-

terer’s polarization of current expansion coefficients 𝑎 𝑘  in 

the form of: 
 

𝑑𝑘  exp 𝑖 𝑘 𝑥  𝑎 𝑘 𝜓 𝑧, 𝑘

𝑄 𝑥, 𝑧 𝐸 𝑥, 𝑧

𝑄 𝑥, 𝑧  𝑑𝑘  
𝑖

2𝑘
exp 𝑖 𝑘 𝑥  𝑎 𝑘 𝜆 𝑘 𝜓 𝑧, 𝑘  

(9) 
 

where 𝑘 𝑘 𝑘  stands for the 2D case,  𝜆 𝑘  st-
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ands for eigenvalue, and 𝜓 𝑧, 𝑘  represents a complete set. 

Here, the estimated current expansion coefficients are 𝑎 𝑘  

at 𝑎 𝑛𝑘 , 1  values, that is, 𝑁   𝐾   . 

We therefore need to identify O × P points of z and x direc-

tions, which can be selected within the scatterer. Once defined, 

the current expansion coefficient equation can be rewritten as:  
 

𝑒𝑥𝑝 𝑖𝑘 𝑥  𝑎 𝑘 𝜓 𝑧 , 𝑘

1
𝛿𝑘

 𝑄 𝑥 , 𝑧  𝐸 𝑥 , 𝑧      

𝑄 𝑥 , 𝑧
𝑖

2𝑘
𝑒𝑥𝑝 𝑖𝑘 𝑥  𝑎 𝑘  𝜆 𝑘  𝜓 𝑧 , 𝑘    

∀ 𝑜, 𝑝 
(10) 

 

Here, integrals are approximated to 𝛴 with a step 𝛿𝑘 . 

Now we can define a linear system to get the estimated current 

expansion coefficients to be: 
  

𝑀 𝑜𝑝 , 𝑛𝑘 𝑎 𝑛𝑘 , 1
𝑐 𝑜𝑝 , 1  𝑀 𝑜𝑝 , 𝑛𝑘  𝑎 𝑛𝑘 , 1  

                                                     

(11) 

where 
 

 𝑀 𝑜𝑝 , 𝑛𝑘 𝑒𝑥𝑝 𝑖𝑘 𝑥  𝜓 𝑧 , 𝑘 ,    (12) 
 

and 
 

 𝑀 𝑜𝑝 , 𝑛𝑘  

            𝑄 𝑥 , 𝑧  𝑒𝑥𝑝 𝑖𝑘 𝑥  𝜆 𝑘  𝜓 𝑧 , 𝑘 , 

(13) 
 

and 
 

𝑐 𝑜𝑝 , 1  𝑄 𝑥 , 𝑧  𝐸 𝑥 , 𝑧 .       (14) 
 

Current expansion coefficients a can then be computed as:  
 

              𝑀 𝑀  𝑎 𝑐.                (15)                 
 

Once we compute the coefficients 𝑎 𝑘 , the scattered 

electric field’s distribution is obtained at the receiver for a giv-

en 𝑘  as: 
 

𝐸 𝑘 , 0 𝑖𝜔𝜇  ∑ 𝑎 𝑘 𝜆 𝑘  𝜓 0, 𝑘 . (16) 
 

The 2D problem was modeled by frequency domain finite el-

ement analysis using the COMSOL Multiphysics software 

package. The incident field was a linearly polarized plane wave  

normalized by   at one megahertz under a scattering  

boundary condition for the structure shown in Fig. 1, with 

𝜖 8, 𝜖 4 and 𝜎 0.002, 𝜎 0.005. The calcu-

lated (using Eq. (16)) and the simulated (using COMSOL) 

scattered electric field results were compared at 11 wavenumbers 

(𝑘 0, 0.11 𝑘 , 0.22 𝑘 , … . , 1.1 𝑘 ), and the results are 

presented in Fig. 2. The diamonds and circles in the figure rep- 

 
Fig. 2. Calculated (using Eq. (16)) and simulated (using COM-

SOL) scattered electric field results at 11 wavenumbers for 

the 2D problem. 
 

resent the field computations of the proposed method and the 

finite element simulation. As shown in Fig. 2, the solution of 

the proposed approach is very close to the finite element analysis 

solution. 
 

2. Three-Dimensional Problem  

In order to extend the proposed solution to the 3D case, the 

model used in this paper is presented in Fig. 3, where a sphere 

of permittivity 𝜖  and conductivity 𝜎  is buried inside a box 

with permittivity 𝜖 and conductivity 𝜎 . Here, the scatterer 

polarization current expansion coefficients 𝑎 𝑘 , 𝑘  can be 

written in the form of [24]: 
 

𝑑𝑘  𝑑𝑘  exp 𝑖 𝑘 𝑥 exp 𝑖𝑘 𝑦 𝑎 𝑘 , 𝑘 𝜓 𝑧, 𝑘 , 𝑘

𝑄 𝑥, 𝑦, 𝑧 𝐸 𝑥, 𝑦, 𝑧

 𝑄 𝑥, 𝑦, 𝑧  𝑑𝑘 𝑑𝑘  
𝑖

2𝑘
exp 𝑖 𝑘 𝑥  exp 𝑖𝑘 𝑦  

         𝑎 𝑘 , 𝑘 𝜆 𝑘 , 𝑘 𝜓 𝑧, 𝑘 , 𝑘   

(17) 

where 𝑘 𝑘 𝑘 𝑘  stands for the 3D case, 𝜆  

𝑘 , 𝑘  stands for eigenvalue, and  𝜓 𝑧, 𝑘 , 𝑘  represents 

a complete set. Here, the estimated current expansion coeffi-

cients are 𝑎 𝑘 , 𝑘  at 𝑎 𝑛𝑘 𝑘 , 1  value  𝑁  
𝐾𝑥    𝐾𝑦  . Here, we need to  
 

 

Fig. 3. General model of the 3D electromagnetic inverse scattering 

problem considered in this paper. 
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identify O  F  P points of z, y, and x directions, which can 

be selected within the scatterer all together. Once defined, the 

current expansion coefficient equation can be rewritten as: 
 

exp 𝑖𝑘 𝑥 exp 𝑖𝑘 𝑦 𝑎 𝑘 , 𝑘 𝜓 𝑧 , 𝑘 , 𝑘

1
𝛿𝑘 𝛿𝑘

 𝑄 𝑥 , 𝑦 , 𝑧  𝐸 𝑥 , 𝑦 , 𝑧

𝑄 𝑥 , 𝑦 , 𝑧
𝑖

2𝑘
exp 𝑖𝑘 𝑥  exp 𝑖𝑘 𝑦 𝑎 𝑘 , 𝑘  

                       𝜆 𝑘 , 𝑘  𝜓 𝑧 , 𝑘 , 𝑘    ∀ 𝑜, 𝑝, 𝑓                         
         

(18) 
 

where integrals are approximated to Σ with steps 𝛿𝑘  and 

𝛿𝑘 . By this representation, all overlap integrals in 𝑘 , 𝑘 , and 

n are avoided. This reduces the computational cost dramatically. 

Now we can define a linear system to get the estimated cur-

rent expansion coefficients to be: 
 

𝑀 𝑜𝑝𝑓 , 𝑛𝑘 𝑘 𝑎 𝑛𝑘 𝑘 , 1  

𝑐 𝑜𝑝𝑓 , 1 𝑀 𝑜𝑝𝑓 , 𝑛𝑘 𝑘  𝑎 𝑛𝑘 𝑘 , 1   

(19) 
 

where 
 

 𝑀 𝑜𝑝𝑓 , 𝑛𝑘 𝑘   

 exp 𝑖𝑘 𝑥  exp 𝑖𝑘 𝑦  𝜓 𝑧 , 𝑘 , 𝑘     (20) 
 

  𝑀 𝑜𝑝𝑓 , 𝑛𝑘 𝑘   

𝑄 𝑥 , 𝑦 , 𝑧
𝑖

2𝑘
 exp 𝑖𝑘 𝑥 exp 𝑖𝑘 𝑦       

𝜆 𝑘 , 𝑘  𝜓 𝑧 , 𝑘 , 𝑘          (21) 
 

𝑐 𝑜𝑝𝑓 , 1  𝑄 𝑥 , 𝑦 , 𝑧  𝐸 𝑥 , 𝑦 , 𝑧    (22) 
 

Then the current expansion coefficient, 𝑎, can be computed 

as:  
 

              𝑀 𝑀  𝑎 𝑐.                 (23) 
 

Once we compute the coefficients 𝑎 𝑘 , 𝑘 , the scat-

tered electric field’s distribution is obtained at the receiver for a 

given 𝑘  and 𝑘  as: 
 

 𝐸 𝑘 , 𝑘 , 0 𝑖𝜔𝜇  
𝑖

2𝑘
𝑎 𝑘 , 𝑘 𝜆 𝑘 , 𝑘  𝜓 0,

 

𝑘 , 𝑘  

(24) 
 

The 3D problem was modeled by frequency domain finite el-

ement analysis using the COMSOL Multiphysics software with 

the same conditions and structure shown in Fig. 3. The calcu-

lated (using Eq. (24)) and the simulated (using COMSOL) 

scattered electric field results were compared at 11 wavenumbers 

(𝑘 0, 0.11 𝑘 , … . , 1.1 𝑘  𝑎𝑛𝑑 𝑘  0, 0.11 𝑘 , … 1.1 𝑘  ).  

The results are presented in Fig. 4; the diamonds and circles  

 
Fig. 4. Calculated (using Eq. (24)) and simulated (using COM-

SOL) scattered electric field results at 11 wavenumbers for 

the 2D problem. 

 

represent the field computations of the proposed method and 

the finite element simulation. As shown in Fig. 4, the solution 

of the proposed approach is very close to the finite element 

analysis solution.    

III. INVERSION APPROACH  

The inversion technique aims to estimate the physical varia-

bles that tolerably fit the scattered data [25]. In electromagnetic 

problems, responses from the model in the form of a scattered 

electric field are nonlinear functions of the proper model’s phys-

ical variables [26]. The physical variables of the model used can 

be predicted using nonlinearized or linearized inversion algo-

rithms [27]. In this paper, the inversion approach uses the de-

veloped forward solver repetitively as an integral part of the in-

verse technique. 

The proposed approach rearranges the nonlinear inversion 

process to find a solution of a set of linear equations. However, 

the final inversion equation is still nonlinear. This is done by 

modeling the electromagnetic inverse problem as a global opti-

mization problem, where the multivariable function of the 

problem is iteratively minimized using the simulated annealing 

technique [28, 29].  

Using simulated annealing in the inversion methodology al-

lows for a straightforward insertion of the a priori information 

into the forward model. Furthermore, the proposed inversion 

approach does not require the starting solutions to represent 

good estimates of the exact configuration of the structure. In 

this paper, optimization of the unknown electrical variables is 

conducted through an objective function, Ob, in the form of: 
 

            𝑂𝑏 ∑ |𝐸 𝐸 |                   (25) 
 

where 𝐸  is the measured electrical field collected at the kth 

wavenumber, for a total of K wavenumbers, and 𝐸  is the elec-

tric field computed at those wavenumbers based on what the 

2M material properties might be (the permittivities and conduc-
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tivities in our case). The objective function is therefore 2M-

dimensional: 
 

𝑂𝑏 ℱ 𝜀 , 𝜎 , 𝑚 1: 𝑀           (26) 
 

where 𝜀  and 𝜎  are the relative dielectric constant and 

conductivity of the mth object. The simulated annealing  

algorithm starts with initial estimates for the object’s electrical 

properties, driven by a priori knowledge of the possible range of 

the model’s physical parameters; this is called the current esti-

mates. 

The algorithm then generates new estimates with a random 

distance from the current estimates in the search space. This 

distance is selected by a probability distribution with a scale de-

pending on the current temperature. Afterwards, the algorithm 

determines whether the new estimates are better or worse than 

the current estimates by evaluating the objective function, Ob, 

for both the current and the new estimates.  

If the objective function value of the new estimates is less 

than that of the current estimates, the new estimates are accept-

ed in place of the current estimates. However, to avoid being 

trapped in the local minima, the algorithm can still accept new 

estimates that raise the value of the objective function in place of 

the current estimates. Thus, the new estimate of the object’s 

electrical properties is accepted either if it is better than the cur-

rent estimate or if it is worse than the current estimates but with 

a certain probability value. This probability is controlled by two 

main factors: the temperature and the difference between the 

current value and the new value of the objective function, and it 

can be defined by an acceptance function: 
 

            𝐹   ,            (27) 

 

where 𝑂𝑏  is the objective function value of the new esti-

mates, 𝑂𝑏  is the objective function value of the current 

estimates, and T is the current temperature. By accepting worse 

estimates based on an acceptance function, the algorithm will be 

able to explore globally for more possible solutions. However, 

during the algorithm iterations to find the best estimate, the 

simulated annealing algorithm systematically decreases the pro-

bability of accepting worse estimates by applying the designed 

cooling schedule 𝑇 , wherein the temperature decreases, leading 

to a lesser acceptance probability. In this paper, three simulated 

annealing cooling schedules are designed, implemented, and 

compared for performance. The first is exponential, where the 

cooling schedule is given by [30]: 
 

                 𝑇 𝑎  𝑇                      (28) 
   

where c = 1, 2, 3 . . . is the iteration number, T0 is the initial 

temperature, and a is the cooling rate. The second is called the 

fast cooling schedule and is given by: 

               𝑇                         (29) 
 

The third is called the Boltzmann cooling schedule, and is 

given by: 

                   𝑇 .                     (30) 

                                                          

Here we use 𝑇 100oC and a = 0.95 for the three cooling 

schedules. In this paper, the different simulated annealing tech-

niques were used to minimize the error between the predicted 

and computed electrical variables, aiming to reach an optimum 

error of 0%. However, if the algorithm cannot reach that goal, 

stopping criteria of 10,000 iterations is implied. After the stop-

ping criterion is achieved, the algorithm outputs the results that 

realize the value nearest to the optimum. 

IV. RESULTS AND DISCUSSION   

In this paper, for both the 2D and 3D problems, we selected 

10 possible structures from which to construct 10 case studies. 

Table 1 summarizes the possible permittivity and conductivity 

ranges of these structures. To measure the efficiency of the pro-

posed inversion technique, we identify a wideness factor that 

quantifies the wideness of each physical parameter range around 

the average. The wideness factor represents a priori knowledge  

 

Table 1. Physical properties of the 10 structures used in this paper 

along with their wideness factors 

Case study no.
Structure 

no. 

Relative  

permittivity, εr 
Conductivity, σ

1 Slab/box 1 5 0.0008

Object 2 10 0.0013

2 Slab/box 4 12 0.04

Object 3 7 0.008

3 Slab/box 3 6 0.004

Object 5 2.10 0.0025

4 Slab/box 3 10 0.0033

Object 1 7 0.0000125

5 Slab/box 3 11 0.001

Object 6 20 0.02

6 Slab/box 6 25 0.1

Object 8 5 0.0005

7 Slab/box 7 60 2.2 × 10–4

Object 6 40 0.0166

8 Slab/box 7 90 4 × 10–4

Object 9 25 1.6667 × 10–4

9 Slab/box 7 80 3.33 × 10–4

Object 8 4 1.11 × 10–4

10 Slab/box 10 30 0.01

Object 2 15 0.002
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Table 2. Physical properties of the ten forward case studies used in 

this paper 

Struc-

ture 

no. 

Relative 

permittivity, 

εr 

εr wide-

ness fac-

tor (%) 

Conductivity, σ 

σ wide-

ness fac-

tor (%)

1 4 to 8 66.66 1 × 10–5 to  

1 × 10–3 

180.95 

2 4.8 to 18.9 118.98 0.001 to 0.005 133.33

3 4.7 to 12 87.42 0.001 to 0.025 155.55

4 3.9 to 29.4 153.15 0.01 to 0.02 66.66

5 2.07 to 2.14 3.32 0.0013 to 0.25 197.93

6 7 to 43 144.00 0.01 to 1 196.00

7 50 to 105 70.96 0.0002 to 0.002 163.63

8 4 to 8 66.66 0.0001 to 0.002 180.90

9 5 to 30 142.80 0.000125 to 

0.001 

155.50

10 10 to 50 133.30 0.00001 to 0.1 199.90

 

for each structure and can be defined as: 
 

wideness %  
     

    
 100. 

(31) 
 

To test the inversion approach in terms of efficiency, values of 

the relative permittivity and conductivity of 10 structures were 

selected to reflect relatively large wideness factors. The inversion 

approach was then applied to the 10 case studies constructed 

from the available 10 structures. The case studies are summa-

rized in Table 2. To analyze the results of the inversion ap-

proach in terms of error, we defined a term for relative percent-

age error 𝑒  as follows: 
 

 𝑒 𝑎𝑏𝑠  
    

  
 100. 

(32) 
 

In order to evaluate the performance of different cooling 

schedules in terms of error, we calculated the error margin over 

100 times for each physical parameter for each cooling schedule 

as follows: 
 

             𝑒  = 
∑

, 𝑡 1,2, … . .100.            (33) 

 

1. The Two-Dimensional Problem  

Fig. 5. The 2D model considered in this paper. 

Fig. 5 illustrates the 2D inhomogeneous media used in this 

paper. The electromagnetic transmitter and receiver are posi-

tioned at the same point just above the top of the media with a 

frequency of one megahertz. For forward problem calculations, 

circles in Fig. 5 represent an indication of selected points within 

the slab, while the Xs represent an indication of the selected 

points inside the object. The inversion problem is formulated to 

estimate four electrical properties of both the slab and the object 

(i.e., 𝜀 , 𝜎 , 𝜀 , 𝜎  given the measured scattered electromag-

netic fields at K wavenumbers, with K = 11. The three proposed 

simulated annealing algorithms were evaluated for the ten 2D 

case studies, and an error margin, 𝑒 , against each case study is 

shown in Fig. 6 where a comparison is made between each cool-

ing schedule per electrical parameter. 

Results in Fig. 6 show that, among the three implemented 

cooling schedules, the Boltzmann cooling schedule achieves 

𝑒  25% as the worst value of the tested case studies. On the 

other hand, the fast and exponential cooling schedules provide 

𝑒  > 40%, in some tested case studies, although they achieve 

lower 𝑒  values than the Boltzmann cooling schedule in other 

cases. From the obtained results, it can be concluded that using 

the Boltzmann cooling schedule within the inversion method-

ology provides a relatively low error margin for most of the es-

timated parameters compared with the other cooling schedules. 

Also, as the 𝑒 % resulting from the Boltzmann cooling sched-

ule are far lower than the wideness factors of the physical pa-

rameters, it can be concluded that the inversion methodology 

achieves better a posteriori knowledge about each physical pa-

rameter than the a priori knowledge. The estimated physical 

parameters can therefore be interpreted correctly after applying 

the proposed inversion methodology as its estimated values are 

within its specified range.  

 

2. The Three-Dimensional Problem 

Fig. 7 illustrates the 3D inhomogeneous media presented in 

this paper. For forward problem calculations, spheres represent 

an indication of selected points within the box, while pyramids 

represent an indication of the selected points inside the object. 

Here, the transmitter and receiver are located at the same place 

on top of the media with a frequency of 1 MHz. The inversion 

problem is formulated to estimate four electrical properties for 

both the object and the box (i.e., 𝜀 , 𝜎 , 𝜀 , 𝜎 ) given the 

measured scattered electromagnetic fields at K wavenumbers, 

with K = 11. For the presented inversion approach, three simu-

lated annealing cooling schedules were assessed for the 10 pro-

posed 3D case studies. An error margin, 𝑒 , for each case 

study is presented and compared in Fig. 8, where a compa-  

rison is made between each cooling schedule per electrical pa-

rameter. 
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Fig. 7. The 3D model considered in this paper. 

 

Results reveal that 𝑒  for the Boltzmann cooling schedule 

does not exceed 30% in the worst case among the investigated 

case studies. The exponential and fast cooling schedules result in 

a higher 𝑒  of > 50% in the worst-case although they may give 

a lower 𝑒   than the Boltzmann cooling schedule in other cas-

es. It can therefore be concluded that, for the 3D problem, ap-

plying the Boltzmann cooling schedule within the inversion 

methodology provides better a posteriori knowledge than a priori 

knowledge. This is due to the relatively low 𝑒  of the estimated 

value compared to the wideness factor of the physical parame-

ters, which in turn results in the correct interpretation of the 

investigated parameters. 

V. CONCLUSION  

In this paper, an inversion scheme using the simulated an-

nealing technique has been presented to solve both 2D and 3D 

inhomogeneous nonlinear inverse scattering problems. First, a 

forward model was developed using a meshless formulation to 

solve Maxwell’s equations. The proposed forward model was 

designed to reduce computational complexity, compared with 

conventional methods, and therefore to take less time to per-

form repetitive computations. Second, an inversion approach 

was proposed to estimate the electric properties of the investi-

gated 2D and 3D scatterers using information about the elec-

tromagnetic source and scattered data. Three simulated anneal-

ing cooling schedules were evaluated against 2D and 3D case 

studies. The results show that using the Boltzmann cooling 

schedule gives a worst-case error of 25% for the 2D case studies 

and 30% for the 3D case studies. The posterior knowledge of 

the electric properties of the investigated scatterer is far better 

than the prior knowledge. These results reveal the efficiency of 

the presented inversion approach in providing relatively good 

estimates about the investigated electric properties of the scat-

terer within their natural range, taking into account the non- 

 

(a) (b) 

   

(c) (d) 

Fig. 6. Error margins in the 2D problem using exponential, fast, and Boltzmann cooling schedules for the 10 case studies: (a) relative 

permittivity and (b) conductivity values of the slab; (c) relative permittivity and (b) conductivity values of the object. 
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uniqueness nature of such problems. The proposed approach 

can be used to solve the inverse scattering problem for inhomo-

geneous media in different areas of research.  
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