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I. INTRODUCTION 

With increasing demands for high data rate services and the 

miniaturization of portable radio devices, the challenge of sup-

porting multiple air interface technologies that enable compact 

multi-mode multi-band devices has become critical [1, 2]. Cur-

rently, the market for electrically controllable matching circuits, 

tunable voltage-controlled oscillators (VCOs), tunable filters, 

and multi-band power amplifier modules (PAM) is growing 

rapidly [3–5]. Digitally tunable capacitors using complementary 

metal-oxide-semiconductors (CMOS) or microelectromechani-

cal system (MEMS) switches have been widely used to meet 

these technical trends [6–8]. 

A digitally tunable inductor can be realized by physically 

changing the metal line length of an inductor with switches. 

Losses of the switches and metal lines have always been limiting 

factors in commercializing high-quality (Q) tunable inductors.  

MEMS-applied tunable inductors have been studied due to 

their low losses [9, 10]. However, they suffer from several draw-

backs, such as complexity, difficulty in monolithic integration 

with other ICs, and reliability problems [11, 12]. Analog con-

trol with MEMS actuators and digital control with MOS 

switches have been employed to realize the tunable inductors 

[13–15], but these inductors have drawbacks in Q-factor, tun-

ing range, and action voltage. 

We propose a high-Q and wide tunable bondwire inductor 

(TBI) digitally controlled by RF CMOS switches. The bond-

wire inductors are adopted because their self-resistance and 

standard manufacturing process cost are much lower than those 

of spiral inductors [16, 17]. The RF switches are designed using 

180 nm silicon-on-insulator (SOI) CMOS technology to min-

imize their turn-on resistance. The performance of the proposed 

TBI is compared with other research results. 
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II. DESIGN OF THE TUNABLE BONDWIRE INDUCTOR 

The basic schematic of the proposed TBI and the related 

equivalent circuits are shown in Fig. 1. The RF switches (S1, S2, 

···, SN) and inductors (L1, L2, ···, LN) are connected in series, 

which are connected in parallel between nodes Lin and Lout. Lpkg1 

and Lpkg2 are the inductance of the bondwire used to package the 

switch integrated circuit (IC), Mij is the mutual inductance be-

tween ith and jth inductors, and Ron is the resistance for the 

switch “on” state [18, 19]. The CMOS switch is made of 12 

field-effect transistors (FETs) stacked for a high-power han-

dling capability of up to 35 dBm. It is designed to have low Ron 

with an enlarged gate width for a high Q characteristic. The 

bondwire inductor is based on the single π-model [20]. When 

the number of inductors connected in parallel increases, the 

total inductance decreases, and the role of the low-loss Lpkg1 be-

comes more important. The overall Q characteristic of the pro-

posed TBI significantly depends on the resistance of the bond-

wire (Lpkg1 in Fig. 1) used to package the switch IC. To reduce- 
 

(a) 

 
(b) 

Fig. 1. (a) Basic schematic of the tunable inductor and (b) the relat-

ed equivalent circuits. 

the resistance, double bonding wire is used. This has been found 

to significantly enhance the overall Q. Spiral inductors on 

CMOS substrates usually have low Q-factors because of their 

high conductor loss, caused by thin metal lines and high dielec-

tric loss. In order to solve these electrical problems, the proposed 

TBI is designed on a package substrate. The schematic diagram 

of this proposed TBI is shown in Fig. 2. The positions of the 

four bondwire inductors achieve a high Q factor by optimizing 

the configuration of the TBI using an electromagnetic (EM) 

field simulator that takes into account mutual inductance. 

For the wide tuning range and monotonous increase of in-

ductance, the final inductance values for the single-pole four-

throw (SP4T) switch IC and four bondwire inductors are Lpkg1 

= 0.5 nH, L1 = 4.7 nH, L2 = 6 nH, L3 = 10.5 nH, and L4 = 3.2 

nH. These inductance values have been finalized with EM-

simulated optimization using a High-Frequency Structure Sim-

ulator (HFSS; Ansys Inc., Canonsburg, PA, USA) and starting 

from a theoretical calculation. The bondwire inductors are im-

plemented on a chip-on-board (COB) substrate with low-loss 

dielectric material and a thick top metal layer. As such, the loss 

for the TBI becomes smaller than that for the wafer-level 

bondwire inductor. Bondwire inductors with low inductance are 

more sensitive to the internal resistance of the RF switch than 

those with high inductance. Thus, the switch S4 for the inductor 

L4 is designed to have the lowest internal Ron among the four 

used switches. The SP4T switch IC is controlled through a 3-

wire (clock, data, and enable) serial peripheral interface (SPI) 

and is usually powered using Vdd (Fig. 2) of about 3.3 V. 

III. FABRICATION AND MEASUREMENT RESULTS 

A prototype TBI was fabricated using a COB assembly pro-

cess to verify the feasibility of the proposed configuration. Pho-

tographs of the prototype are shown in Fig. 3. The size of the 

module consisting of four bondwire inductor arrays and an 

SP4T RF switch was 2.0 × 2.4 × 0.8 mm3. The size of the 
 

Fig. 2. Diagram of the proposed TBI structure. 
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(b) 

Fig. 3. Microphotograph of the TBI module: (a) top view and (b) 

side view. 

 

fabricated SP4T switch with the SPI communication block was 

1.3 × 0.8 × 0.3 mm3. It used thin-film SOI 180 nm CMOS 

RF switch technology. During fabrication of the TBI, the 

switch chip was die-bonded on a package substrate (Fig. 2), and 

the wire bonding for the bondwire inductor and chip packaging 

was performed using 1 mil (25.4 μm) diameter gold wire. The 

separation between the bondwires is 100 μm. The height of the 

bondwires is 300 μm, and the total length of a single bondwire 

is 1.06 mm. The fabricated chip was measured using a Keysight 

E5071C network analyzer (Keysight Technologies Inc., Santa 

Rosa, CA, USA) with a short-open-load-through (SOLT) cal-

ibration and de-embedding.    

Table 1 lists the performance of the TBI depending on states 

of 4-bit switch combinations. The fabricated TBI chip exhibits 

a variable inductance from 1.77 to 11 nH at 0.1 GHz. The 

maximum Q of 29.5 occurs at 2.1 GHz in state 15, where the 

self-resonant frequency (SRF) is 4.42 GHz. 

The measured inductances and Q-factors are shown in Fig. 4 

as a function of frequency from 0 to 3.5 GHz. The measured 

inductance of the TBI shows a monotonically increasing charac-

teristic. In Fig. 4(b), the states with two or more bondwire in-

ductors are shown to have higher Q characteristics than those 

with one bondwire inductor. These high Q characteristics are 

obtained by minimizing the turn-on resistance of the RF switch 

with an enlarged gate width, minimizing the self-resistance of 

package bondwire with a double bondwire connection, and op-

timizing the configuration of the TBI using the 3D EM simu-

lation tool. 

The measured inductances and Q-factors for all states at 1.5 

GHz and 2 GHz are shown in Fig. 5. A higher Q occurs with 

more parallel-connected inductors, as in states 11 and 15. When 

the number of parallel inductors increases, the TBI has an addi-

tional magnetic flux due to the mutual coupling. The parallel 

inductance by the bondwire inductors becomes small so that the 

effect of the inductance of Lpkg1 used as a package is relatively 

high. Therefore, a higher Q is achieved with more parallel-

connected TBIs. 

In Table 2, the performance of the proposed TBIs are com-

Table 1. Performance depending on switch states 

Switch state Combination of inductors 
L (nH)

@0.1 GHz

Peak Q

(Qpeak)

Freq. 

@Qpeak 

SRF

(GHz)

1 L1 5.20 10.8 1.30 2.47

2 L2 6.50 8.6 1.07 2.24

3 L1 // L2  3.14 17.1 1.24 3.41

4 L3 11.00 6.2 0.72 1.74

5 L1 // L3 3.75 13.3 1.30 2.94

6 L2 // L3 4.32 11.0 1.23 2.54

7 L1 // L2 // L3 2.61 14.4 1.44 3.07

8 L4 3.70 15.3 1.24 2.95

9 L1 // L4 2.40 21.3 1.85 4.42

10 L2 // L4 2.59 19.1 1.72 2.94

11 L1 // L2 // L4 1.95 28.0 2.01 4.40

12 L3 // L4 2.95 12.4 1.44 2.85

13 L1 // L3 // L4 2.11 25.7 1.85 4.43

14 L2 // L3 // L4 2.24 23.1 1.90 3.41

15 L1 // L2 // L3 // L4 1.77 29.5 2.10 4.42
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Fig. 5. Measured inductances and Q factors for all states at 1.5 

GHz and 2 GHz. 

pared with others [13–15, 20–27] in terms of primary induct-

ance, size, tuning range, Q-factor, and action voltage. Due to 

the narrow tuning range characteristics below 233 and the need 

for voltage above 7 V or special operating signals, the tunable 

inductors [14, 15, 20–26] using MEMS actuators have limita-

tions for general product applications. In Park et al. [13], a mul-

ti-layer stacked inductor switched by MOSFETs is reported. 

The main drawback of this device is its low Q, caused by para-

sitic losses of the transistor. In Wainstein and Kvatinsky [27], 

two topologies, a memristive-via switched tunable inductor and 

a multi-layer stacked inductor tuned by RF memristive switches, 

are proposed and simulated using Advanced Design System 

(ADS). By improving the parasitic losses of the switch, Wain- 

(a) (b) 

Fig. 4. Measured inductances (a) and Q-factors (b) for different switching states. 

 
Table 2. Comparison of tunable inductors  

Ref., year 
Control Size  

(mm2) 

Primary  

inductance 

(nH) 

Tuning  

range  

(%) 

Q-factor  

/ freq.  

(GHz) Type Method 

[13], 2003 Digital CMOS 1.6 V 0.2 × 0.22 8 < 200 7 / 2

[14], 2005 Analog MEMS 7 V 2.2 × 4 8.5 < 30 35 / 2

[21], 2008 Digital MEMS 40 V - 1.1 47 45 / 6

[20], 2009 Analog MEMS 0–11 mW 0.25 × 0.25 0.72 < 100 26 / 15

[23], 2009 Digital MEMS 60 V 0.4 × 0.69 0.75 < 80 8.5 / 4

[15], 2010 Analog MEMS 9 V - 0.36 < 78 17.6 / 3.9

[22], 2012 Analog MEMS 20 V 1.6 × 1.6 3 < 233 12.9 / 5.3

[24], 2012 Analog MEMS ~1.2 A 8 × 8 186 < 16 23 / 0.06

[25], 2013 Analog MEMS Liquid injected - 1.3 < 60 18 / 12

[26], 2013 Analog MEMS RF 0.7 W 7 × 7 37.5 < 12 17 / 1.2

[27], 2018 Digital Memristor -0.4 to 3 V - 4.6 < 296 18 / 5 

Proposed Digital CMOS 3.3 V 2 × 2.4 1.77 < 521 29.5 / 2
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stein and Kvatinsky [27] obtain a higher Q than Park et al. [13]. 

TBI has the advantages of complete SPI control, wide tuning 

range by 4-bit control, and high Q using bonding wire induc-

tors. Overall, the proposed TBI is superior to others.  

IV. CONCLUSION 

The proposed tunable bondwire inductor has been shown to 

exhibit a wide (521%) tuning range, from 1.77 to 11 nH at 0.1 

GHz. It has also shown high Q-factors, with a maximum of 

29.5 when four inductors are all connected in parallel. These 

competitive results have been obtained using thin-film SOI 180 

nm CMOS RF switch technology and wire bond technology. 

The proposed tunable inductor is a promising key component 

for such uses as electrically controllable RF circuits, filters with 

wide tuning range, and matching circuits for various applica-

tions. 
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