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I. INTRODUCTION 

Given the importance of scattering by cavities in various ap-

plications, such as radar cross-section studies and non-des-  

tructive testing [1–3], considerable research has recently ana-

lyzed scattering from filled open cavities through different tech-

niques [3–8]. In all these works, a cavity was assumed to be a 

very smooth surface, and the most important aspects examined 

were cavity shape as well as the accuracy and time efficiency of 

simulations.  

The current research differs from previous studies in that it 

investigated the effects of filling material roughness on scatter-

ing from a rectangular groove given the important role that this 

property plays in scattering problems. From an electromagnetic 

point of view, describing a surface as smooth or rough depends 

on the frequency and incidence angle of waves. The calculation 

of scattering waves from rough surfaces is usually a difficult task, 

especially for complex geometric shapes and randomly distribut-

ed surfaces. In this regard, the small perturbation method has 

been suggested as an approach to modeling scattering waves 

from rough surfaces under low-frequency constraints [9]. Under 

high-frequency limitations, however, the Kirchhoff model is 

preferable in predicting the scattering of waves from a surface 

[10]. To expand approaches to modeling under these con-

straints, researchers developed the integral equation model 

(IEM), which covers all frequency intervals at high accuracy 

[11]. In [11], the authors introduced the IEM based on the 

electric field integral equation (FIE) and considered approxima-

tions of the phase of a Green’s function in the spectral domain. 

The author later enhanced his version of the IEM through 

some modifications [12]. Notwithstanding the value of these 

initiatives, however, little research has been devoted to the ef-

fects of filling material roughness on scattering from a rectangu-

lar cavity.  
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To address this gap, we inquired into the extent to which the 

weakly rough surface of a filled groove (such as a polished exte-

rior with weak residual roughness) can change scattering signa-

tures. To derive scattered fields, we used the FIE method in such 

a way that a closed-form integral equation for a rough surface 

was constructed and then solved via the method of moments 

(MoM), which uses the pulse basis function. The advantage of 

the FIE is that a problem with minimal mesh points can be 

solved in a way that enables the division of a rough surface into 

small elements. The challenge is that in commercial electromag-

netic simulators for which complete numerical methods such as 

the MoM and FEM (finite element method) are used, the en-

tire surface that surrounds a groove or its volume must be 

meshed. In these simulations, time efficiency is a problem. For 

example, in computing scattering waves from a small groove on 

a large object, the number of meshes and CPU time must be 

increased considerably. In this work, we assumed that the sur-

faces of two walls and the bottom portions of a rectangular 

groove and an infinite ground plane have a perfectly smooth 

surface and that the filling material has a weakly rough surface, 

thereby preventing maximum variations in the groove surface to 

exceed a few tenths of the wavelength of an incident wave and 

groove depth.  

The rest of the paper is organized as follows. Section II de-

scribes some simplifying assumptions that were considered in 

the approximation of Green’s functions inside and outside the 

groove. In applying continuity in the tangential magnetic field 

to the rough surface, a logarithmic singular magnetic field inte-

gral equation (MFIE) was constructed for the equivalent mag-

netic current. Section III discusses the discretization of the 

MFIE with logarithmic singularity and its subsequent resolu-

tion via the MoM. We used a set of constant values for local 

points (pulse basis function) on the rough surface to approxi-

mate the equivalent magnetic current. Increasing the number of 

points employed enhances the accuracy of results. After the sin-

gularity was eliminated, the MFIE was converted into a system 

of linear equations. A solution of a linear system of N equations 

needs an operation count relative to 𝑁ଷ. Section IV presents 

the comparison of the proposed technique with the FEM and 

MoM used in HFSS and FEKO. We also employed the pro-

posed method to compare the scattering patterns of three typi-

cal cases: convex, concave, and smooth surfaces. The analysis of 

the results indicated that the roughness of a filling material can 

alter the scattering signature of a filled rectangular groove.  

II. PROBLEM DESCRIPTION 

Let us assume that a two-dimensional filled rectangular 

groove is embedded on an infinite ground plane. The groove is 

created using three perfect conductor walls with a very smooth 

surface. The filling material has a continuous rough surface with  

 

Fig. 1. Geometry of a rectangular groove filled with a rough mate-

rial εଶ, μଶ. 

 

an arbitrary profile 𝑙 ∶ 𝑦 ൌ 𝑓ሺ𝑥ሻ (Fig. 1). An H-polarized in-

cident plane wave illuminates the groove. By enforcing conti-

nuity in the tangential magnetic field on surface l, we derive 
 

 𝐻௭
௜௡௖ ൅ 𝐻௭

௥௘௙ ൅ 𝐻௭
ோ௘௚௜௢௡ଵ ൌ 𝐻௭

ோ௘௚௜௢௡ଶ

𝑙 ∶ 𝑦 ൌ 𝑓ሺ𝑥ሻ (1)
 

The sum of incident and reflected magnetic fields can be 

written as 
 

𝐻௭
௜௡௖ ൅ 𝐻௭

௥௘௙ ൌ 2𝑒௝௞బሺሺ௫ିௐ
ଶ ሻ ୡ୭ୱ ఝబା௬ ୱ୧୬ ఝబሻ 

𝑙 ∶ 𝑦 ൌ 𝑓ሺ𝑥ሻ 

 

(2)

 

where 𝑘଴ and 𝜑଴ are the free space propagation constant and 

incidence angle, respectively. The z-component of the tangen-

tial magnetic field in regions 1 and 2 (𝐻௭
ோ௘௚௜௢௡ଵ

 and 𝐻௭
ோ௘௚௜௢௡ଶ

, 

respectively) on the rough surface are obtained as follows: 

 

(a) Determining 𝐻௭
ோ௘௚௜௢௡ଵ

  

By considering the Green’s function in region 1, the tangen-

tial magnetic field 𝐻௭
ோ௘௚௜௢௡ଵ

 on the rough surface can be ob-

tained thus [3]: 
 

𝐻௭
ோ௘௚௜௢௡ଵሺ𝑥, 𝑦ሻ ൎ െ

𝑘଴𝑌଴

2
න 𝑀ሺ𝑟ᇱሻ𝐻଴

ሺଶሻሺ𝑘଴ |𝑟 െ 𝑟ᇱ|ሻ𝑑𝑙

௟

଴
𝑙: 𝑦 ൌ 𝑓ሺ𝑥ሻ 

(3)
 

 

where 𝑟 ൌ 𝑥𝑥ො ൅ 𝑦𝑦ො , 𝑟′ ൌ 𝑥′𝑥ො ൅ 𝑦′𝑦ො  and  |𝑟 െ 𝑟ᇱ| ൌ

ඥሺ𝑥 െ 𝑥′ሻଶ ൅ ሺ𝑦 െ 𝑦′ሻଶ. Moreover, 𝑌଴ is the intrinsic admit-

tance in free space, and 𝐻଴
ሺଶሻሺ. ሻ is the zero-th order Hankel 

function of the second kind. 
  

(b) Determining 𝐻௭
ோ௘௚௜௢௡ଶ

 
 

We assumed that the maximum variations in the groove sur-

face in terms of cavity depth and wavelength are small. We can 

therefore approximate the Green’s function 𝐺ሺ𝑟, 𝑟ᇱሻ in the 

groove as 
 

𝐺ሺ𝑟, 𝑟ᇱሻ ൎ ෍
𝜀௡

𝑊

ஶ

௣ ୀ ଴

𝑔ሺ𝑦 ൎ 0, 𝑦′ሻcos ቀ
𝑝𝜋𝑥
𝑊

ቁ cos ቆ
𝑝𝜋𝑥ᇱ

𝑊
ቇ

(4)
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in which function 𝑔ሺ𝑦 ൎ 0, 𝑦′ሻ is estimated in the following 

manner: 
 

𝑔ሺ𝑦 ൎ 0, 𝑦ᇱሻ ൌ 𝑔ሺ𝑓ሺ𝑥ᇱሻሻ ൌ
1

𝑘௣ሺ𝑥ᇱሻ tan൫𝑘௣ሺ𝑥ᇱሻ𝑡൯
 

(5)
 

The variable 𝑘௣ሺ𝑥′ሻ in Eq. (5) is given by 
 

𝑘௣ሺ𝑥′ሻ ൌ ඨ𝜔ଶ𝜀଴𝜀௥௕ሺ𝑥ᇱ, 𝑓ሺ𝑥ᇱሻሻ𝜇ଶ െ ቀ
𝑝𝜋
𝑤

ቁ
ଶ
 (6)

 

where 𝜀௥௕ሺ𝑥′, 𝑓ሺ𝑥ᇱሻሻ is the effective relative dielectric permit-

tivity of the filling material for the configuration shown in Fig. 2. 

This permittivity can be determined as follows [13]: 
 

𝜀௥௕ሺ𝑥, 𝑦ሻ ൌ 𝜀௥௕൫𝑥, 𝑓ሺ𝑥ሻ൯ ൌ 𝜀௥ଶ ൅ ෍ ሺ

ே

௜ ୀ ଵ

𝜀௥ଵ െ 𝜀௥ଶሻ 

ൈ ቆ𝐻 ൬𝑥 െ 𝑥௜ െ
∆
2

൰ െ 𝐻 ൬𝑥 െ 𝑥௜ ൅
∆
2

൰ቇ 

ൈ ൭𝐻 ൬𝑓ሺ𝑥ሻ െ 𝑦௜ െ
ℎ௜

2
൰ െ 𝐻 ൬𝑓ሺ𝑥ሻ െ 𝑦௜ ൅

ℎ௜

2
൰൱ 

 

(7)
 

in which 𝐻ሺ. ሻ is the Heaviside function, N is the number of 

subdivision lengths ∆, the coordinate of the nth sector is at 

point ሺ𝑥௜,𝑦௜ሻ, and its size is ∆, as determined on the basis of 

ℎ௜.  

With consideration for the Green’s function 𝐺ሺ𝑟, 𝑟ᇱሻ in re-

gion 2, the 𝐻௭
ோ௘௚௜௢௡ଶ on the rough surface can be given by 

 

𝐻௭
ோ௘௚௜௢௡ଶ ൌ െ𝑗𝑘௕𝑌௕ ׬ 𝑀ሺ𝑟ᇱሻGሺr, rᇱሻ𝑑𝑙

௟
଴  

𝑙: 𝑦 ൌ 𝑓ሺ𝑥ሻ 
(8)

 

Replacing Eqs. (3), (8), and (2) in Eq. (1) yields the following 

integral equation:  
 

2𝑒௝௞బሺሺ௫ିௐ
ଶ ሻ ୡ୭ୱ ఝబା௬ ୱ୧୬ ఝబሻ െ

𝑘଴𝑌଴

2
ൈ 

              න 𝑀ሺ𝑟ᇱሻ𝐻଴
ሺଶሻሺ𝑘଴ |𝑟 െ 𝑟ᇱ|ሻ𝑑𝑙

௟

଴

ൌ െ𝑗𝑘௕𝑌௕ න 𝑀ሺ𝑟ᇱሻGሺ𝑟, 𝑟ᇱሻ𝑑𝑙

௟

଴

 
 

(9)
 

 

Fig. 2. A rectangular groove filled with a material with a weakly 

rough surface. 

Integral equation (9) is a Fredholm’s integral equation of the 

first kind and can be represented in the form below: 
 

𝐵ሺ𝑥, 𝑦ሻ ൌ න 𝑀௭ሺ𝑥ᇱ, 𝑦′ሻ𝐾ሺ𝑥, 𝑥ᇱ, 𝑦, 𝑦ᇱሻ𝑑𝑙

௟

଴

 (10)

 

where 𝐾ሺ𝑥, 𝑥ᇱ, 𝑦, 𝑦ᇱሻ and 𝐵ሺ𝑥, 𝑦ሻ are defined as follows:  
 

𝐾ሺ𝑥, 𝑥ᇱ, 𝑦, 𝑦ᇱሻ ൌ 𝐾൫𝑥, 𝑥ᇱ, 𝑓ሺ𝑥ሻ, 𝑓ሺ𝑥ᇱሻ൯ ൌ 𝐾ሺ𝑥, 𝑥ᇱሻ (11)

ൌ
𝑘଴𝑌଴

2
𝐻଴

ሺଶሻ ቀ𝑘଴ ඥሺ𝑥 െ 𝑥ᇱሻଶ ൅ ሺ𝑦 െ 𝑦ᇱሻଶቁ

െ 𝑗𝑘௕𝑌௕𝐺ሺ𝑥, 𝑥ᇱሻ    
 

𝐵ሺ𝑥, 𝑦ሻ ൌ 𝐵ሺ𝑥, 𝑓ሺ𝑥ሻሻ ൌ 𝐵ሺ𝑥ሻ

ൌ 2𝑒௝௞బሺሺ௫ିௐ
ଶ ሻ ୡ୭ୱ ఝబା௬ ୱ୧୬ ఝబሻ (12)

 

III. SOLUTION OF INTEGRAL EQUATION 

Let us consider the rough surface l:𝑦 ൌ 𝑓ሺ𝑥ሻ illustrated in 

Fig. 1. Differential dl is defined as 
 

𝑑𝑙 ൌ ඥ𝑑𝑥ଶ ൅ 𝑑𝑦ଶ ൌ 𝑑𝑥ඨ1 ൅ ൬
𝑑𝑦
𝑑𝑥

൰
ଶ

ൌ 𝑑𝑥ඥ1 ൅ 𝑓′ሺ𝑥ሻଶ (13)
 

Function 𝑁ሺ𝑥ሻ is defined thus:  
 

𝑀ሺ𝑥ሻ ൌ 𝑀ሺ𝑥, 𝑓ሺ𝑥ሻሻ ൌ
𝑁ሺ𝑥ሻ

ඥ1 ൅ 𝑓′ሺ𝑥ሻଶ
 

 

(14)
 

Substituting Eqs. (13) and (14) in Eq. (9) rearranges integral 

equation (9) as follows: 
 

𝐵ሺ𝑥ሻ ൌ න 𝑁ሺ𝑥ᇱሻ𝐾ሺ𝑥, 𝑥ᇱሻ𝑑𝑥ᇱ

ௐ

଴

 
(15)

 

Numerous methods can be used to solve integral equation 

(15). To discretize it, we used the MoM, wherein func-

tion 𝑁ሺ𝑥ሻ is approximated via the pulse basis function series 

with constant width ∆ [8]. That is,  
 

𝑁ሺ𝑥ᇱሻ ≅ ෍ 𝑁௡

ே

௡ ୀ ଴

𝑃∆/ଶሺ𝑥ᇱ െ 𝑥௡ሻ 
(16)

 

where 𝑥௡ ൌ 𝑛∆ െ ∆/2 and 𝑁௡ are the unknown coefficients 

of pulse expansion 𝑁ሺ𝑥ᇱሻ. When Eq. (16) in Eq. (15) is re-

placed and certain mathematical simplifications are performed, 

for each midpoint 𝑥௡, integral equation (15) becomes 
 

𝐵ሺ𝑥௠ሻ ൌ ∆ ෍ ෍ 𝑁௡

ெ

௠ ୀ ଴

ே

௡ ୀ ଴

𝐾ሺ𝑥௠, 𝑥௡ሻ

൅ 𝑁௠ න 𝐾ଵሺ𝑥௠, 𝑥ᇱሻ𝑑𝑥′

௫೘ା∆/ଶ

௫೘ି∆/ଶ

 

(17)
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in which 
 

𝐾ଵሺ𝑥௠, 𝑥ᇱሻ   

ൌ
𝑘଴𝑌଴

2
𝐻଴

ሺଶሻ ቀ𝑘଴ ඥሺ𝑥௠ െ 𝑥ᇱሻଶ ൅ ሺ𝑓ሺ𝑥௠ሻ െ 𝑓ሺ𝑥′ሻሻଶቁ 
 

(18)
 

𝐾ሺ𝑥௠, 𝑥௡ሻ ൌ
𝑘଴𝑌଴

2
ൈ 

𝐻଴
ሺଶሻ ቀ𝑘଴ ඥሺ𝑥௠ െ 𝑥௡ሻଶ ൅ ሺ𝑓ሺ𝑥௠ሻ െ 𝑓ሺ𝑥௡ሻሻଶቁ െ

𝑗𝑘௕𝑌௕

𝑊
. 

 

෍
𝜀௣ sinc ቀ

𝑝𝜋∆
2𝑊 ቁ

𝑘௣ሺ𝑥௡ሻ tan൫𝑘௣ሺ𝑥௡ሻ𝑡ሺ𝑥௡ሻ൯

ஶ

௣ ୀ ଴

cos ቀ
𝑝𝜋𝑥௠

𝑊
ቁ cos ቀ

𝑝𝜋𝑥௡

𝑊
ቁ

(19)

 

The singular integral in Eq. (17), which originates from the 

logarithmic singularity in Hankel function 𝐻଴
ሺଶሻሺ. ሻ, is given by  

 

න 𝐾ଵሺ𝑥௠, 𝑥ᇱሻ𝑑𝑥ᇱ ൌ

௫೘ା∆
ଶ

௫೘ି∆
ଶ

𝑘଴𝑌଴ ൈ 

න 𝐻଴
ሺଶሻ ቀ𝑘଴ ඥሺ𝑥௠ െ 𝑥௡ሻଶ ൅ ሺ𝑓ሺ𝑥௠ሻ െ 𝑓ሺ𝑥௡ሻሻଶቁ 𝑑𝑥′

∆/ଶ

଴

(20)

 

In accordance with the derivative definition, when 𝑥ᇱ  is 

close to 𝑥௠, we derive 
 

𝐻଴
ሺଶሻ ቀ𝑘଴ |𝑥௠ െ 𝑥ᇱ|ඥ1 ൅ 𝑓′ሺ𝑥′ሻଶቁ ൌ lim 

௫ᇱ→௫೘

൬
𝑘଴𝑌଴

2
ൈ 

𝐻଴
ሺଶሻ ቀ𝑘଴ ඥሺ𝑥௠ െ 𝑥ᇱሻଶ ൅ ሺ𝑓ሺ𝑥௠ሻ െ 𝑓ሺ𝑥′ሻሻଶቁ൰ (21)

 

The small argument approximation for the Hankel function 

in Eq. (21) is used in the following manner: 
 

  𝐻଴
ሺଶሻሺ𝛽ሻ

ఉൎ଴
ൎ 1 െ

2𝑗
𝜋

ln ൬
𝛽𝛾
2

൰ (22)

 

where 𝛽 ൌ 𝑘଴ |𝑥௠ െ 𝑥ᇱ|ඥ1 ൅ 𝑓′ሺ𝑥′ሻଶ, and 𝛾 ൌ 1.78107 is 

Euler’s constant. Integrating singular integral (20) analytically 

yields 
 

න 𝐾ଵሺ𝑥௠, 𝑥ᇱሻ𝑑𝑥ᇱ ൌ

௫೘ା∆/ଶ

௫೘ି∆/ଶ

 

𝑘଴𝑌଴

2
∆ ൤1 െ

2𝑗
𝜋

ln ൬
∆𝛾
4𝑒

𝑘଴ඥ1 ൅ 𝑓′ሺ𝑥௠ሻଶ൰ ൨ 

(23)

 

where e  = 2.71828 is Nipper’s constant. In Eq. (17), taking N 

= M represents integral equation (15) in matrix form thus: 
 

𝐾. 𝑁 ൌ 𝐵 (24)
 

where 𝑁 ൌ ሾ𝑁଴, 𝑁ଵ, … , 𝑁ெሿ
 are the unknown coefficients that 

should be computed. 𝐵 ൌ ሾ𝐵ሺ𝑥଴ሻ, 𝐵ሺ𝑥ଵሻ, … , 𝐵ሺ𝑥௠ሻሿ  is an 

excitation matrix, and matrix elements 𝐵௠ are calculated as 

follows: 

 

𝐵ሺ𝑥௠ሻ ൌ 2𝑒௝௞బሺሺ௫೘ିௐ
ଶ ሻ ୡ୭ୱ ఝబା௙ሺ௫೘ሻ ୱ୧୬ ఝబሻ (25)

 

𝐾௠௡ can be expressed as 
 

𝐾௠௡ ൌ
𝑗𝑘௕𝑌௕

𝑊
෍

𝜀௣ sinc ቀ
𝑝𝜋∆
2𝑊 ቁ

𝑘௣ሺ𝑥௡ሻ tan ቀ𝑘௣ሺ𝑥௡ሻ𝑡ሺ𝑥௡ሻቁ
ൈ

ஶ

௣ ୀ ଴

 

cos ቀ
𝑝𝜋𝑥௠

𝑊
ቁ cos ቀ

𝑝𝜋𝑥௡

𝑊
ቁ ൅

𝑘଴𝑌଴

2
ൈ 

൞
𝐻଴

ሺଶሻ ቀ𝑘଴ ඥሺ𝑥௠ െ 𝑥௡ሻଶ ൅ ሺ𝑓ሺ𝑥௠ሻ െ 𝑓ሺ𝑥௡ሻሻଶቁ , 𝑚 ് 𝑛

∆ ൤1 െ
2𝑗
𝜋

ln ൬
∆𝛾𝑘଴

4𝑒
ඥ1 ൅ 𝑓′ሺ𝑥௠ሻଶ൰ ൨ ,     𝑚 ൌ 𝑛

 

 

(26)

 

Now, matrix 𝑁 can be calculated through matrix inversion. 

After calculating unknown coefficients 𝑁௠, coefficients 𝑀௠ 

are determined using Eq. (14), and then far-field waves and 

echo widths can be obtained using the formulas presented in  

[3]: 
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(28)
 

IV. RESULTS 

This section recounts the verification of the proposed method 

via the FEM and MoM solutions used in HFSS and FEKO. 

We carried out comparisons for the groove shown in Fig. 1 with 

convex (Fig. 3(b)) and concave (Fig. 3(a)) surfaces. Fig. 4(a) and 

4(b) illustrate the effects of the angle of incidence on the 

backscattering echo widths of a filled groove with a concave 

surface (Fig. 3(a)) having the profile 𝑓ሺ𝑥ሻ ൌ 0.2𝑥ଶ െ 0.4𝑥 

and a filled groove with a convex surface (Fig. 3(b)) character-

ized by the profile 𝑓ሺ𝑥ሻ ൌ െ0.2𝑥ଶ ൅ 0.4𝑥, respectively. The 

comparisons were conducted using FEM and MoM solutions 

to highlight the validity and accuracy of the proposed method 

(Fig. 4(a) and 4(b)). The results in Fig. 4 are in good agreement 

with the other numerical solutions. The echo widths are depict-

ed in Fig. 4(a) and 4(b), and the echo width of a filled rectangu-

lar groove with a very smooth surface is shown in Fig. 5 to ex-

amine the difference between these echo widths. An analysis of 

the results presented in Fig. 5 indicated that so long as the inci-

dence angle is greater than 80୭ ሺ𝜑଴ ൐ 80୭ሻ, only a slight dif-

ference in echo widths occurs. As the incidence angle decreases, 

this difference increases. It also becomes more pronounced at 

grazing angles. A comparison of the diagrams displayed in Fig. 5  



BOZORGI: EFFECTS OF FILLING MATERIAL ROUGHNESS ON SCATTERING FROM A RECTANGULAR GROOVE 

239 

  
 

(a) 

 

(b) 

Fig. 3. Geometry of a filled rectangular groove with (a) convex and 

(b) concave surfaces. 

 

 

(a) 

 

(b) 

Fig. 4. Backscattering echo widths of the rectangular groove with 

the rough surface shown in Fig. 3 for various incidence an-

gles and the following conditions: 𝑤 ൌ 4𝜆, 𝑑 ൌ 1𝜆, 𝜀௕ ൌ
2.5 െ 𝑗0.2, 𝜇௕ ൌ 1.8 െ 𝑗0.1, as well as (a) convex surface   

(𝑓ሺ𝑥ሻ ൌ 0.2𝑥ଶ െ 0.4𝑥 ) and (b) concave surface (𝑓ሺ𝑥ሻ ൌ
െ0.2𝑥ଶ ൅ 0.4𝑥). 

 

demonstrates that a rough surface can alter the levels and posi-

tions of dips.  

We likewise used the proposed method to inquire into the ef-

fects of roughness on bistatic echo width. Taking the bistatic 

echo width pattern of the smooth surface as the reference, we 

can deduce from Fig. 6 that a rough surface affects bistatic echo 

width more strongly on the wave incidence side than on another 

region. In other words, back reflections change more frequently. 

 

Fig. 5. Simultaneous display of the backscattering echo widths 

shown in Fig. 4. 
 

Rough surface 𝜑଴ ൌ 60଴ 

 

 

Convex surface 

 

 

 

Smooth surface 

 

 

 

Concave surface 

 

Fig. 6. Bistatic echo width patterns for different rough surfaces of a 

filled rectangular groove at 𝑤 ൌ 4𝜆, 𝑑 ൌ 1𝜆, 𝜀௕ ൌ 2.5 െ
𝑗0.2, 𝜇௕ ൌ 1.8 െ 𝑗0.1, 𝜑଴ ൌ 60଴. 

 

Note, however, that as the gradient of surface equation 

(|𝑓ᇱሺ𝑥ሻ|) increases, the number of subdivisions N in Eqs. (7) 

and (16) should be augmented to derive accurate results. If such 

a gradient change rapidly at point  𝑥௠, or 𝑓′ሺ𝑥௠ሻ ൎ ∞, the 

obtained findings would be invalid, and the method put forward 

in this work cannot be used. 

Finally, the results suggested that a weak residual roughness 

of polished surfaces can alter monostatic and bistatic patterns. 

These changes are significant at some observation angles.  

The solution of the problem described in this paper and its 

results can be used in radar cross-section reduction studies, non-

destructive testing, and surface roughness testing applications. 

V. CONCLUSION 

The H-polarized scattering by a filled rectangular groove 

with a weakly rough surface embedded on an infinite ground 

plane was examined. We considered some appropriate approxi-

mations for Green’s functions to simplify and solve an integral 

equation on the groove surface. We employed this method to 
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look into scattered waves from convex, concave, and smooth 

surfaces. The results showed that for incidence angles near the 

normal, backscattering echo widths are approximately equal. If 

an incidence angle decreases, the difference between backscat-

tering echo widths increases. We also determined the bistatic 

patterns of the above-mentioned cases. The findings demon-

strated that a weakly rough surface, such as a polished exterior 

with a weak residual roughness, can change scattering signatures 

considerably.  
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