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I. INTRODUCTION 

A passive coherent location (PCL) is a type of radar system 

exploiting third-party transmitters that were initially construct-

ed for broadcasting and communication systems [1–3]. Like 

other radar receivers, the PCL determines the target presence or 

absence via the well-known detection technique called the cell-

averaging constant false alarm rate (CA-CFAR) [4], which is 

particularly useful in a homogeneous noise background. PCLs 

can also employ variations of CFAR, such as greatest of (GO) 

CFAR, smallest of CFAR, order statistic CFAR, and trimmed-

mean CFAR [4], which are useful in various heterogeneous 

environments. 

As the neural network (NN) has been the main focus of 

interest for researchers in recent years, there have been several 

trials to construct an NN architecture-based target detector and 

to obtain a better receiver operating characteristic (ROC) than 

that of traditional CFAR techniques [5–11]. Among them, [5–8] 

proposed using multi-layer perceptron (MLP)-based architec-

tures either to construct a target detector or to identify the noise 

background. In [5], the authors considered the problem of the 

target detection method using artificial NNs in a K-distributed  
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Abstract 
 

The constant false alarm rate (CFAR) has been widely used in radar systems to detect target echo signals because of its simplicity. With 

the recent development of different types of neural networks (NNs), NN architecture-based target detection methods are also being con-

sidered. Several studies related to NN-based target detectors have introduced multi-layer perceptron-based and convolutional neural net-

work (CNN)-based structures. In this paper, we propose a CNN-based target detection method in frequency modulation (FM)-band 

passive coherent location (PCL). We improved the detection performance using a maxpooling layer and a Hadamard division layer, which 

are parallelly placed with a CNN layer. Moreover, in our method there is no need to determine the specific cell configuration (e.g., cell 

under test, reference cells, and guard cells) because the proposed method obtains the trained kernels by end-to-end learning. We show 

that the trained kernels help in the extraction of either signal or noise components. Through the simulations, we also prove that the pro-

posed method can yield an improved receiver operating characteristic compared to that of a cell-averaging CFAR detector for FM-band 

PCL in a homogeneous environment. 
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environment. The authors in [6] designed a network to deter-

mine whether the background environment is homogeneous or 

heterogeneous, and this network was used only for environmen-

tal identification. Akhtar and Olsen [7, 8] trained the MLP-

based detectors using the results of CA-CFAR and GO-CFAR. 

Convolutional neural network (CNN)-based architectures were 

also suggested in [9–11]. Lin et al. [9] trained a network to es-

timate the noise variance more accurately, even when the target 

existed in the range-Doppler domain. The authors in [10] 

trained the CNN model for target detection in the range-

Doppler domain, but their NN determined the target presence 

or absence under a single range-Doppler map. Gusland et al. [11] 

presented a CNN-based detector that trained the entire image 

of the range-Doppler maps in a similar way as in [10]. 

This paper proposes a new target detection method using 

CNN architecture in a homogeneous environment for frequen-

cy modulation (FM) radio-based PCL. A significant difference 

in our way compared to previous approaches is the introduction 

of an input-wise normalization layer. This input-wise normali-

zation layer gives the NN improved detection performance. By 

comparison, most of the previous works on CNN-based target 

detectors focused on the conventional CNN structures, which 

were initially used for the computer vision area. The MLP-

based systems are still used for target detection tasks. Compared 

to the MLP structures, the CNN has advantages in computa-

tional complexity because of its sparse connectivity, and this fea-

ture allows the kernels to be efficiently trained. 

We also show that the CNN model including a fully convo-

lutional layer [12] can be used to efficiently perform cell-wise 

classification for target detection tasks in the cross-ambiguity 

function (CAF), similar to several other image processing tech-

niques. The exploitation of a fully convolutional layer helps in 

training NNs for per-cell classification tasks. This structural 

feature allows the kernels to be designed in such a way that they 

are not limited to the traditional cell configuration of CFAR, 

such as cell under test (CUT), reference cell, and guard cell. 

Therefore, the cell configuration need not be explicitly consid-

ered at all stages. 

To the best of our knowledge, our method is the first to use 

the input-wise normalization layer to improve the CA-CFAR 

technique. Related works [10, 11] using the CNN model only 

derive the detection result from a single range-Doppler map. To 

develop the CFAR-like detector, we propose adding a maxpool-

ing layer and a Hadamard division layer, which are in parallel 

with the first CNN layer. In this paper, the two layers parallelly 

placed with the first CNN layer are defined as "an input-wise 

normalization layer." 

Finally, we show that each trained kernel in the proposed 

method can carry out respective roles to extract the CUT and 

the sum of reference cells. The performance of the proposed 

method is also derived in terms of its detection probability, 

number of false clusters, and false alarm rate. From the above 

discussion, we can observe that the ROC of the proposed meth-

od outperforms that of CA-CFAR under homogeneous condi-

tions in the FM-based PCL system. 

The remainder of this paper is organized as follows. The layer 

architecture of the proposed method is presented in Section II. 

The training details are described in Section III. The simulation 

results are given in Section IV, and we conclude the paper in 

Section V. 

II. LAYER ARCHITECTURE 

Fig. 1 illustrates the layer architecture of the proposed detec-

tor. The layer architecture has a CNN layer and two fully con-

volutional layers. The hidden unit of the first convolution layer 

is a rectified linear unit (ReLu), and the activation function of 

the output layer is a softmax function, which is applied for all 

cells of the output. The depth of the proposed layer architecture 

is shallow; however, it is sufficient to derive satisfactory detec-

tion performance, even when using a simple model. 

As shown in Fig. 1, the squared magnitude of CAF, 𝐗 ∈ℝ × , is fed to the input layer of the CNN. We used a two-

dimensional rectangular kernel with a size of 𝐾 (odd number) 

in the CNN layer, and the size of the feature map is reduced by 𝐾 1 in both x (range) and y (Doppler frequency) dimensions 

because the zero padding is not applied in this step. For exam-

ple, if the input size of CAF is 𝑀 × 𝑁, then the size of the fea-

ture map is 𝑀 × 𝑁 , where 𝑀 = 𝑀 𝐾 1  and 𝑁 =𝑁 𝐾 1. To maintain the size of the feature map in the first 

CNN layer, zero padding can be applied. However, the padded 

zero values on the edges of the input data may increase the false 

alarm rate because the addition of zeros makes it appear to have 

a much lower noise power compared to no zero padding. 

Therefore, we concluded that it is better not to perform zero 

padding. At the output of the first CNN layer, the batch nor-

malization [13] can be considered to train deep models, but this 

is not significant for our architecture because our proposed NN 

model has a shallow depth compared to recently developed im-

 
Fig. 1. Layer architecture of the proposed neural network-based 

target detection method. 
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age processing techniques. 

The fully convolutional layer produces output with the same 

size as the feature map of the first CNN layer. As we aim to 

classify all the cells in two categories (i.e., target present and 

target absent), the kernel dimension of the output is equal to 𝑅 × 2, where 𝑅 denotes the number of kernels in the first 

CNN layer. Finally, the softmax output layer transforms the 

feature maps to the probabilistic measures, and this result pro-

duces the classification labels. 

The remarkable difference between our proposed architecture 

and the NNs for conventional image processing is that our NN 

architecture performs an input-wise normalization process via 

the Hadamard division layer and the maxpooling layer. The 

input-wise normalization constructed by the two layers helps 

the NN detect cells with relatively higher values than other 

noise components. As we do not focus on the detection tech-

nique with absolute numerical values, the input-wise normaliza-

tion is sufficient for the target detector in this regard. The max-

pooling layer is placed in parallel with the CNN layer. The 

Hadamard-wise division layer takes the feature maps of the 

CNN and the maxpooling layer as two inputs. Suppose we have 

matrices of the output feature map 𝐘 ∈ ℝ ×  derived from 

rth kernel; then the output matrix 𝐙 ∈ ℝ ×  corresponding 

to the rth kernel can be represented by 
 

        𝐙 = 𝐘 ∘ 𝐐, 𝑟 = 0, 1, … , 𝑅 1, (1)
 

where ∘ denotes an operator for Hadamard division (i.e., ele-

ment-wise division), and 𝐐 ∈ ℝ ×  denotes the output of 

maxpooling to the 𝐾 × 𝐾 grid with stride 1.  

A simple example of input-wise normalization, given an in-

put data 𝐗, a kernel 𝐖, and an output 𝐘 (without padding), is 

as follows: 
 𝐗 = 0 1 01 0 0.10 0.1 0 , 𝐖 = 0 11 0 , 𝐘 = 2 00 0.2 .

(2)
 𝐗 and 𝐙 are then calculated by 

        𝐐 = 1 11 0.1 , 𝐙 = Y ∘ 𝐐 = 2 00 2 . (3)

 

This example shows how the input-wise normalization ena-

bles detecting the specific features. In (2), 𝐖 can be viewed as 

an extractor for anti-diagonal lines, and thus, the diagonal ele-

ments of 𝐘 become 2 and 0.2. However, the diagonal compo-

nent of 0.2 in 𝐘 is also highlighted up to 2 in 𝐙 using the 

input-wise normalization process. 

The input-wise normalization using maxpooling and Hada-

mard division has the advantage that it can be easily constructed 

in most NN frameworks, such as TensorFlow, PyTorch, and 

MATLAB. These frameworks support the maxpooling layer for 

various applications, and it is also easy to introduce the input-

wise normalization. Without the input-wise normalization, the 

models might learn only the probability density of the noise 

process itself. 

III. NETWORK TRAINING 

1. Data-Generation Process 
To train a model using the CNN approach, we consider the 

input data-generation and desired output generation. As de-

scribed in the previous section, the input dataset comprises the 

pieces of magnitude-squared CAF 𝐗, including at least one 

target signal. Fig. 2 shows the FM radio signal-based CAFs. As 

the instantaneous bandwidth of the FM radio message signal 

varies, we can see that the range resolution also changes de-

pending on the message signals. 

The corresponding desired output represents each cell as ei-

ther target present or target absent, and therefore the output 

tensors have a size of 𝑀 × 𝑁 × 2 using one-hot encoding in 

the output nodes. Examples of the input data and the desired 

outputs are presented in Fig. 3. Note that the examples of the 

desired outputs in Fig. 3 (second row) represent binary hy-

pothesis as 1 and 0. 

Fig. 2. Examples of the FM radio signal-based cross-ambiguity functions.
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In the input data-generation stage, we considered the target 

signal to have a fractional sample delay and a fractional Doppler 

frequency shift. The fractional values are applied in the CAF to 

reflect the actual receiving environment. The element of the 

CAF, 𝑋 ,  for 𝜏 = 𝑀 2⁄ , … , 𝑀 2⁄ 1 and 𝜈 = 𝑁 2⁄ , … , 𝑁 2⁄ 1 (𝑀 and 𝑁 are even numbers) can be written as 
      𝑋 , = 𝑥 𝑘 𝑠∗ 𝑘 𝜏 Δ𝑘 𝑒 / , 

(4)
 

where 𝐾 is the number of observation samples, 𝑥 𝑘 =𝑠 𝑘 𝑤 𝑘 , 𝑠 𝑘  denotes the complex envelope of an FM  

signal, 𝑤 𝑘 ∼ 𝒩 0, 𝜎  denotes an independent and identi-

cally distributed (i.i.d.) complex Gaussian random process, Δ𝑘 ∼ 𝒰 0.5, 0.5  (𝒰 stands for uniform distribution) is a 

fractional sample delay, Δ𝜈 ∼ 𝒰 0.5, 0.5  Hz denotes the 

fractional Doppler frequency shift, and 𝑓  represents the sam-

pling frequency. 
In addition to the fractional values, we also varied the signal-

to-noise ratio (SNR) of the target echo signal. To train the NN 

as a robust detector for all SNRs of interest, we randomly de-

termine the SNR of the target echo signal. For our training da-

ta-generation, we sampled an SNR value in the uniform distri-

bution of 𝒰 50, 10  dB. 

The result of CA-CFAR can produce the desired output vec-

tor 𝐲 ,  for each τ and ν. For example, if the CFAR declares  

that the target is present, then 𝐲 , = 𝐲 = 1,0 . If the 

CFAR declares that the target is absent, then 𝐲 , = 𝐲 = 0,1 . This is also applied in the proposed CNN detector. 

We expect the CNN detector to have a considerably low false 

alarm rate compared to CA-CFAR; therefore, most false alarms 

are removed in the desired outputs. Considering the fractional 

Doppler frequency shift, the initial detection results 𝐲 ,  located 

in |𝜈| 1 Hz are only allowed to have y = 1,0 . Other-

wise, 𝐲 , = 𝐲 = 0,1 . Fig. 2 (first row) shows the desired  

output sequences corresponding to the input data. As the in-

stantaneous bandwidth of the FM baseband signal is not a con-

stant, we can see that the number of cells for target present in 

the bistatic range domain varies with the corresponding message 

signal. 

 

2. Loss Function 
We used a cross-entropy (CE) loss function for CNN train-

ing. When we denote 𝐲 = 𝑦 , 𝑦  for convenience, we omit 

the subscripts of 𝜏 and 𝜈 in 𝐲 , , and the CE loss function of 𝐿 𝐰  with respect to kernels of the NN, 𝐰, can be written as 
 𝐿 𝐰 = ∑ 𝛽𝑦 log 𝑦 1 𝑦 log 1 𝑦 ,   (5) 

 

 

where 𝛽 denotes the coefficient for weighted CE, 𝑦  denotes 

the binary indicator, and 𝑦  represents the predicted probabil-

ity at the nth output node 𝑛 = 1, 2 . As described earlier, the 

binary indicators for 𝐻  (target present) and 𝐻  (target absent) 

are defined by 𝐲 = 𝑦 , 𝑦 = 1,0  and 𝐲 = 𝑦 , 𝑦 = 0,1 , respectively. A rationale for using 𝛽 (generally 𝛽 = 1) 

is to solve the class imbalance between 𝐻  and 𝐻  in the 

desired output labels. If the occurrence of 𝐻  is much less than 𝐻 , then 𝛽 needs to be increased. 

IV. SIMULATION RESULTS 

1. Training Input and Label Data-Generation 
For the CNN-based detector training, different CAFs are 

produced using message signals. The training dataset comprised 

26,573 range-Doppler images. These images include several 

types of broadcast content, such as human voices and a wide 

range of music broadcasted via FM radio transmission in South 

Korea. 

The training data can be generated using the complex enve-

lope of an FM signal and (4). When we denote the sampled 

message signal as 𝑚 𝑘 , the complex envelope of an FM signal 𝑠 𝑘  can be generated by 
 𝑠 𝑘 = exp 𝑗2𝜋∆𝑓 𝑚 𝑘 ∆𝑡 , 

(6)
 

where 1/∆𝑡 denotes the sampling frequency of 200 kHz, ∆𝑓 

denotes the frequency deviation of 75 kHz, and 𝐿 is the num-

ber of observation samples of 200,000. Note that the coherent 

processing interval is 1 second.  

The desired labels are generated from these constructed 

images. We used the modified result of two-dimensional CA-

CFAR, where the number of guard cells is (7, 2), and the refer-

ence cell size is (0, 5) on either side. Because the instantaneous 

bandwidth of the FM radio signal fluctuates according to the 

message signal, we do not include cells having the same Doppler 

frequency as the test cell in the noise variance calculation. 

We also designed the CAFs to have a size of 64 × 64. The 

output labels have a size of 50 × 50 because the size of a 

 
Fig. 3. Examples of training input images and corresponding desired 

output images. 
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rectangular kernel is 𝐾 = 15. 

 

2. Training Phase 
In the layer architecture, the number of kernels is set to 𝑅 =50 at the first CNN layer, and then the kernels have 152

 × 50 

coefficients. Note that the biases in the first CNN layer are not 

updated and are initialized to 0. The output of the first CNN 

layer is a tensor with a size of 50 × 50 × 50. The first fully 

convolutional layer takes the feature map of the first CNN layer 

as the input data, and therefore it has 50 × 250 weights and 

250 biases. The second fully convolutional layer has 250 × 2 

weights and 2 biases. The output of the softmax layer has a size 

of 50 × 50 × 2, and this provides the final predictions using a 

parameter 𝛾, which is viewed as a false alarm rate. If 𝑦 > 𝛾, 

then the detector decides 𝐻 . Otherwise, it decides 𝐻 . 

In the training phase, a stochastic gradient descent optimizer 

with the learning rate of 0.01 and the momentum term of 0.9 

was used to train our CNN model. To prevent the overfitting 

issue, we used L2 parameter regularization with a regularization  

factor of 10 . The number of epochs was 100, and the mini-

batch size was 128. 

Fig. 4 shows the gray-scaled 50 kernels of the first CNN layer. 

As shown, the trained kernels either perform signal extraction 

or noise variance calculation. For example, the kernels with a 

significantly higher value (white color) at the center than in the 

background can be viewed as CUT. In contrast, the kernels 

with a much lower value (black color) at the center than in the 

background can be viewed as the sum of reference cells. This 

result shows that the kernels act like the CFAR technique. 

 

3. Test Phase 
To derive the detection performance of the proposed method, 

we conducted 10,000 Monte Carlo simulations. The detection 

results were then averaged using a message signal, which is not 

included in the training sets. 

We measured the false alarm rate when the target is absent. 

Although the false alarm rate is determined in advance, the ex-

tended target cells (i.e., the correlated cells in the CAF) may 

change the actual false alarm rate. 

We obtain the target present or target absent in two ways. 

First, we clustered the detected cells as a group and then deter-

mined whether the group is the target or not (see Figs. 5 and 6). 

If the clustered cells are in a specific region, then the detection 

result is determined as present. Second, we only considered a 

target cell placed at the (0, 0) position in the range-Doppler 

map (see Fig. 7). A detailed performance analysis is presented in 

the next subsection. 

 
4. Performance Comparison 

To compare the performance of the CNN detector and CA-

CFAR, we calculated the number of false clusters when the 

target signal was absent. In this paper, the cluster is defined as a 

group of detected cells that are closely spaced with a cell dis-

 
Fig. 5. Detection probability of CA-CFAR and CNN detector 

versus the average number of false clusters. 

 

 
Fig. 6. Detection probability of CA-CFAR and CNN detector 

versus the false alarm rate with clustering.

Fig. 4. Trained 50 kernels of first CNN layer with grayscale (white 

and black colors represent 1 and 0, respectively). 
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tance of 1. The targets are generally detected as the extended 

cells in the FM radio signal-based CAF. Therefore, we also 

used the number of false clusters as a performance metric. We 

obtained 50,000 CAFs with a size of 500 × 400, and the CAFs 

were obtained from the reference signal (SNR = 60 dB) and 

Gaussian noise. Subsequently, we applied the CNN detector 

and CA-CFAR, and the detected cells were clustered. Finally, 

we counted the number of clusters and averaged the results. Fig. 5 

shows the number of false clusters on the x-axis with respect  

to 𝛾 = 0.1, 0.05, 0.01, 5 × 10 , 10 , and 10  and a false 

alarm rate 𝑝 = 5 × 10 , 10 , 5 × 10 , 10 , 5 × 10 , and 10 . The detection probability versus target SNR is also shown 

in Fig. 5, where we can see that the CNN detector has a higher 

detection probability at the same number of false clusters. Fig. 6 

shows the detection probability versus the false alarm rate. In 

terms of the false alarm rate, the CNN detector has a slightly 

better detection performance than that of CA-CFAR. 

Fig. 7 shows the proposed method’s detection performance, 

CA-CFAR algorithms with various cell configurations, and the 

method in [10]. In this case, we considered only the detection 

result of the target cell. Because the method in [10] uses differ-

ent size of data from ours, we slightly modified [10]; in this pa-

per, the kernel size of the first CNN layer is 7 and the kernel 

size of the second CNN layer is 5. As shown in Fig. 7, the pro-

posed method outperforms other detection methods, such as 

CA-CFAR detectors and the method in [10]. 

V. CONCLUSION 

We designed a CNN architecture-based target detector for 

FM radio-based PCL. The proposed architecture includes the 

maxpooling layer and the Hadamard division layer, which help 

the detector perform the input-wise normalization. Using the 

input-wise normalization, we showed that the trained kernels at 

the first CNN layer perform the extraction for either CUT or 

the sum of reference cells, as in the CFAR schemes. We also 

showed that the proposed target detector has a better ROC 

than CA-CFAR in a homogeneous noise background. 

The proposed CNN-based target detector performs the de-

tection process similar to CA-CFAR; therefore, our method 

also has the limitations of CA-CFAR, and the detection per-

formance of the proposed method is degraded by particular 

environments, such as the multi-target environment and heter-

ogeneous noise background. Fortunately, the CNN-based layer 

architecture can be improved by using appropriate training data 

reflecting the actual receiving environment. Therefore, in our 

future work, we will expand the CNN-based target detector to a 

form that can handle the multi-target environment and hetero-

geneous noise background in various PCL systems. 
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