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I. INTRODUCTION 

Synthetic aperture radar (SAR) [1] has been widely developed 

to obtain high-resolution two-dimensional (2D) images of ob-

jects. Usually, optical images are very limited to only day and clear 

weather conditions. However, SAR images could be obtained in 

almost any condition, regardless of daylight, cloud coverage, 

weather, and so on. The SAR system provides a 2D reflectivity 

map of regions of interest (ROIs) with bright spots from a high 

backscattered signal. Until recently, it has been impossible for im-

age analysts to process all the collected data from various re-

sources. Due to the rapid growth of such an enormous collection 

capacity, the demand for automatic target recognition (ATR) has 

been continuously increasing. 

In SAR-ATR [2, 3], it is very important to build a database 

(DB) of targets of interest (TOIs) from measurement images. 

However, it is very difficult to construct a measurement DB from 

various angles. Therefore, it is very hard to recognize the target 

signature. To overcome this difficulty, the simulation images of 

TOIs could be generated from inverse SAR (ISAR) [4] to supple- 
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Abstract 
 

The proposed approach achieves the reliable accuracy of synthetic aperture radar-automatic target recognition (SAR-ATR) with a simula-

tion database. The simulation images of targets-of-interest are generated from inverse SAR using high-frequency techniques. A measure-

ment image translation-automatic target recognition (MIT-ATR) uses two deep learning networks. The unique feature of the MIT-ATR 

is that the measurement images are translated to the simulation-like images by cycle generative adversarial network (CycleGAN). Cy-

cleGAN does not need to have a dataset of paired images between the measurement and simulation images. The generated simulation-like 

images are used as the inputs of the Visual Geometry Group (VGG) network. The VGG network is trained on a simulation database with 

a softmax layer of multi-classes. Five classes, including a T-72 tank, are considered in the numerical experiments. The images of each class 

are simulated at all azimuth angles, but the elevation angles range from 6° to 30°. The accuracy of the proposed approach is 63% better than 

that of the traditional method with only the VGG network. The simulation database could definitely supplement the lack of measurement 

data. The accuracy of MIT-ATR is properly handled by CycleGAN and the VGG network. 
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ment the measurement images. 

There is a common procedure for generating simulation im-

ages of TOIs. First, the computer-aided design (CAD) model of 

a target can be generated from a laser scan or indirect information, 

such as an online CAD model or photos. The accuracy of the 

CAD model depends on the operating frequency of the SAR sys-

tem. Second, the radar cross-section (RCS) of the CAD model 

can be computed using various numerical techniques. In full-

wave methods, three main categories, namely, method of mo-

ments (MoM) [5], finite element method [6–8], and finite dif-

ference time domain (FDTD) [9–12], are very popular in the 

community of computational electromagnetics. However, these 

approaches require a lot of numerical complexity of memory and 

CPU time to solve the problem in the X-band (approximately 10 

GHz). To overcome these numerical complexities, fast algo-

rithms, such as the multilevel-fast multipole method (ML-FMM) 

[13], integral equation-fast Fourier transform (IE-FFT) [14, 15], 

domain decomposition-finite element method (DD-FEM) [16], 

and finite difference time domain-message passing interface 

(FDTD-MPI) [17], have been developed. However, these tech-

niques could still be limited to constructing a simulation DB for 

target recognition. Therefore, high-frequency techniques [18–20] 

are very useful and powerful methods, notwithstanding the inac-

curate results compared with full-wave methods. Finally, ISAR 

images can be generated from RCS data using a frequency sweep. 

Inaccurate modeling and high-frequency techniques should be 

carefully handled. 

Deep learning frameworks, such as TensorFlow [21], PyTorch 

[22], and others [23–25], have been widely used with GPU-ac-

celerated libraries. Frameworks based on convolutional neural 

networks (CNN) [26] have been developed and specialized in 

image recognition and computer vision. The Visual Geometry 

Group (VGG) network [27] by the University of Oxford has 

been very popular in its good performance despite its simplicity. 

The Pix2pix [28] network learns mapping from input images to 

output images. The network creates a desired image by the con-

ditions of the latent variables. The generative adversarial network 

(GAN) [29] efficiently learns to generate new images with the 

same statistics as a training set. The main disadvantage of this 

technique is that the network should have paired images for the 

training sets. CycleGAN [30] proposes an image translation 

technique from a source domain to a target domain without 

paired sets. In the area of SAR-ATR, deep learning research is 

continuously increasing. Deep learning research based on CNN 

[31], faster region-CNN (R-CNN) [32], you only look once ver-

sion 2 (YOLOv2) [33], etc., has been analyzed, tested, and de-

veloped. 

This paper proposes a measurement image translation-

automatic target recognition (MIT-ATR) method based on 

CycleGAN with an SAR simulation DB. The uniqueness of the 

proposed method is that it translates from measurement images 

to simulation-like images. The main reason for using a simula-

tion DB is that the measurement images are not sufficient at all 

angles. Therefore, CycleGAN is considered and recommended 

to supplement measurement images owing to unpaired image-

to-image translation. The main difficulty in using a simulation 

DB is generating images similar to measurements. Convention-

ally, simulation images are pre-processed by image adjustments, 

such as an image filter, intensity, histogram statistics, etc. These 

techniques are very inconvenient and time-consuming processes. 

The proposed approach is to generate simulation-like images us-

ing CycleGAN. The generated images are tested by a VGG neu-

ral network. The performance of the proposed approach is much 

better than that of the VGG. 

The outline of the article is organized as follows: Section II 

provides a description of the MIT-ATR technique, Section III 

demonstrates the accuracy and performance of the proposed ap-

proach, and finally, the paper is concluded in Section IV. 

II. A MEASUREMENT IMAGE TRANSLATION-AUTOMATIC 

TARGET RECOGNITION TECHNIQUE 

An MIT-ATR technique is proposed to enhance target classi-

fication when the simulation DB is available. The proposed ap-

proach has two steps. The first step is the translation process 

through CycleGAN. A measurement image with noise is trans-

lated into an image similar to a simulation image generated from 

a high-frequency technique, such as shooting and bouncing rays 

(SBR), physical optics (PO), etc. The second step is the classifi-

cation process through the VGG network. These steps are much 

better than the VGG network on its own. Fig. 1 shows the con-

ventional target recognition approach. Due to insufficient meas-

urement DB, the simulation DB is used. However, the accuracy 

of target recognition is extremely limited due to discrepancies be-

tween the measurement and simulation images. 

Therefore, an MIT-ATR approach based on the VGG net-

work with the simulation DB is shown in Fig. 2. In the training  

 

 
Fig. 1. Conventional target recognition approach based on VGG 

network with simulation DB. 
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Fig. 2. An MIT-ATR approach based on VGG network with simula-

tion DB. 

 
stage, the measurement images are trained on CycleGAN to 

construct simulation-like images. On the other hand, the simu-

lation images are trained on the VGG network with the simula-

tion DB due to the lack of measurement data. In the testing stage, 

the measurement images are translated into simulation-like im-

ages. The VGG network trained with the simulation DB classi-

fies the translated images as a softmax function of multiple classes. 

The main difference between the conventional and proposed 

approaches is the translation stage from measurement images to 

simulation-like images. 

 
1. VGG Network based on CNN 

In this section, a VGG network based on transfer learning is 

used for target classification by ImageNet [34]. The VGG16 net-

work is shown in Fig. 3. Originally, the input of VGG16 was a 

fixed-size 224 × 224 RGB image. In this paper, the size of the 

input images is a 50 × 50 gray image, which is the maximum size 

of TOIs. For transfer learning, 50 × 50 SAR images should be 

resized to fit the input size of VGG16 by bi-cubic interpolation. 

The resized SAR images train the basic VGG16, which consists 

of convolutional, max-pooling, fully-connected (FC), and soft-

max layers. The convolution filters have 3 × 3 pixel windows. Five 

max-pooling layers are followed by some of the convolutional lay-

ers. Finally, a stack of convolutional and max-pooling layers is fol-

lowed by three FC layers. The outputs of the softmax layer are the 

five classes in this paper. 

 

 
Fig. 3. VGG16 neural network with 50 × 50 × 1 input images. 

2. Cycle Generative Adversarial Network 

The use of a simulation DB could solve the lack of measure-

ment data. However, using only the VGG network does not 

guarantee the accuracy of the target classification. In this section, 

CycleGAN is proposed as the pre-processing of the VGG net-

work. A brief objective of CycleGAN is explained. There are two 

types of losses in CycleGAN. One is the adversarial loss, which 

is given by: 
 𝑚𝑖𝑛ீ 𝑚𝑎𝑥஽ೊ 𝐿஺ሺ𝐺, 𝐷௒, 𝑋, 𝑌ሻ = 𝐸௬∼௣೏ೌ೟ೌሺ௬ሻሾ𝑙𝑜𝑔 𝐷௒ ሺ𝑦ሻሿ ൅𝐸௫∼௣೏ೌ೟ೌሺ௫ሻ ቂ𝑙𝑜𝑔 ቀ1 − 𝐷௒൫𝐺ሺ𝑥ሻ൯ቁቃ (1) 

 

and 
 𝑚𝑖𝑛ி 𝑚𝑎𝑥஽೉ 𝐿஺ሺ𝐹, 𝐷௑, 𝑋, 𝑌ሻ = 𝐸௫∼௣೏ೌ೟ೌሺ௫ሻሾ𝑙𝑜𝑔 𝐷௑ ሺ𝑥ሻሿ ൅𝐸௬∼௣೏ೌ೟ೌሺ௬ሻ ቂ𝑙𝑜𝑔 ቀ1 − 𝐷௑൫𝐹ሺ𝑦ሻ൯ቁቃ (2) 

 

where G and F are mapping functions from one domain 𝑋 to 

the other 𝑌 and vice versa, respectively. 𝐷௑  and 𝐷௒  are dis-

criminators between translated samples and real samples. 𝑋 and 𝑌  are two domains for measurement and simulation images. 𝑥 ∼ 𝑝ௗ௔௧௔ሺ𝑥ሻ and 𝑦 ∼ 𝑝ௗ௔௧௔ሺ𝑦ሻ are data distributions of two 

domains, respectively. The key to GAN’s success is the idea of an 

adversarial loss that forces the generated images to be indistin-

guishable from real images. The other is cycle consistency loss, 

which is expressed as follows: 
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where ‖⋅‖ଶ  indicates 𝐿ଶ  norm. Finally, the loss function of 

CycleGAN is written as follows: 
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where λ is the weighting constant between two types of losses. In 

this paper, λ is 10. The details of the implementation of Cy-

cleGAN are shown by Zhu [30]. The procedure for CycleGAN 

is shown in Fig. 4. 

The input images could be measurement or simulation images. 

In this paper, a generator 𝐺௑→௒ translates from a measurement 

image to a simulation-like image. To ensure cycle consistency, 

the generated image is translated into a reconstructed image by a 

generator 𝐺௒→௑ . The cycle consistency loss function tries to 

minimize the difference between a measurement and a recon-

structed image. A discriminator 𝐷௒ tries to force the generated 

images to be indistinguishable from real simulation images. The 

final goal is to translate measurement images into simulation-like 

image. 
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Fig. 4. Procedure of CycleGAN to generate a simulation-like image. 

 
3. A Simulation-Like Image Translation 

There are two ways to generate unpaired image-to-image 

translation using CycleGAN. One approach translates from sim-

ulation images to measurement images. The other is the other 

way around. Fig. 5 shows the 3D CAD model of a T-72 tank. In 

reality, it is not easy to obtain measurement data without a real 

model. CAD models from indirect information, such as Internet 

models or photos, could be required to compensate for insuffi-

cient measurement data. From the CAD model, a high-fre-

quency technique can create a simulation SAR image using mul-

tiple angle and frequency sweeps. However, the measurement 

images are quite different from the simulation images. Reducing 

the discrepancy between two images requires a lot of modifica-

tion based on indirect information. Due to the advent of Cy-

cleGAN, such complicated modifications are not necessary to 

obtain certain accuracy. However, an accurate matching process 

between measurement and simulation images should be handled 

carefully if more accurate results are required. 

Fig. 6 shows a comparison of the translation results between a 

measurement image and a simulation image by CycleGAN. The 

 

 

Fig. 5. The 3D CAD model of a T-72 tank. 

measurement image is obtained at elevation (EL) = 15° and 

azimuth (AZ) = 20°. The simulation is obtained from a slightly 

different angle at EL = 14° and AZ = 20°. The measurement 

data originated from moving and stationary target acquisition 

and recognition [35]. The original, translated, and reconstructed 

images from CycleGAN are described in Fig. 6(a)–6(f). The 

original measurement image 𝑋  and simulation image 𝑌 are 

shown in Fig. 6(a) and 6(d), respectively. The translated image 𝐺ሺ𝑋ሻ  from the mapping 𝐺: 𝑋 → 𝑌  is shown in Fig. 6(b). 

The measurement image is translated into a simulation-like 

image. The reconstructed image 𝐹൫𝐺ሺ𝑋ሻ൯ is shown in Fig. 

6(c). The consistence loss function between the original and the 

reconstructed image is minimized by 𝐿ଶ norm. The translated 

image 𝐹ሺ𝑌ሻ from the mapping 𝐹: 𝑌 → 𝑋 is shown in Fig. 6(e). 

For the consistency loss function, the reconstructed image is 

generated as 𝐺൫𝐹ሺ𝑌ሻ൯ in Fig. 6(f). In this paper, measurement 

images are used as an input image 𝑋 . The translated image 𝐺ሺ𝑋ሻ is a simulation-like image. To compute the consistency 

loss, the reconstructed image is generated as 𝐹൫𝐺ሺ𝑋ሻ൯. The loss 

function is rewritten as follows: 
 𝐿൫𝐺, 𝐹, 𝐷௫, 𝐷௬൯ = 𝐿஺ሺ𝐺, 𝐷௒, 𝑋, 𝑌ሻ ൅ 𝜆𝐿஼஼ሺ𝐺, 𝐹ሻ    (5) 

 

where 𝐿஼஼ሺ𝐺, 𝐹ሻ = 𝐸௫∼௣೏ೌ೟ೌሺ௫ሻ ቂฮ𝐹൫𝐺ሺ𝑥ሻ൯ − 𝑥ฮଶቃ.      (6) 
 

The adversarial loss is the same as in Eq. (1). The generator 𝐺makes a translated image close to the other domain. The dis-

criminator 𝐷௒ compares the generated image 𝐺ሺ𝑋ሻ with the 

original simulation image 𝑌 to minimize the adversarial loss. 

     
(a)               (b)               (c) 

     
(d)               (e)                (f) 

Fig. 6. Comparison between a measurement image (at EL = 15° and 

AZ = 20°) and a simulation one (at EL = 14° and AZ = 20°) 

for a T-72 tank through CycleGAN: (a) measurement image, 

(b) a translated image from measurement to simulation-like, 

(c) a reconstructed image from simulation-like to reconstructed 

measurement-like, (d) a simulation image, (e) a translated 

image from simulation to measurement–like, and (f) a recon-

structed image from measurement-like to reconstructed sim-

ulation-like.
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Fig. 7 shows the original, translated, and reconstructed images 

at various angles. Fig. 7(a) shows the measurement images at EL 

= 15°, and AZ = 1°, 43°, and 89°. The simulation images are dis-

played in Fig. 7(d). Each translated image is shown in Fig. 7(b) 

and 7(e). Each reconstructed image is displayed in Fig. 7(c) and 

7(f). In the proposed approach, the simulation-like images in Fig. 

7(b) are tested with the simulation images in Fig. 7(d). The gen-

erated images are much more similar than the simulation images. 

Now, the correlation of the original images is compared with that 

of the translated images. The values of the correlation between 

Fig. 7(a) and 7(b) relative to Fig. 7(d) are computed. The coeffi-

cient of correlation between the measurement and the simulation 

images is computed by: 
 𝑟ெௌ = ௖௢௩ሺெ,ௌሻఙಾఙೄ                      (7) 

where 𝑐𝑜𝑣ሺ𝑀, 𝑆ሻ = ଵே ∑ ሺ𝑀௜ − 𝜇ெሻሺ𝑆௜ − 𝜇ௌሻே௜ୀଵ ,       (8) 
 𝜎ெ = ටଵே ∑ ሺ𝑀௜ − 𝜇ெሻଶே௜ୀଵ ,             (9) 

and 𝜎ௌ = ටଵே ∑ ሺ𝑆௜ − 𝜇ௌሻଶே௜ୀଵ .               (10) 

 𝑁 is the number of pixels for a chip. 𝑀௜ and 𝑆௜ are the 𝑖௧௛ 

pixel intensity of the measurement and simulation images, re-

spectively. 𝜇ெ and 𝜇ௌ are the average values of the pixel inten-

sity for the measurement and simulation images, respectively. 

The coefficients of correlation between the original and trans-

lated measurement images relative to the original simulation 

images are compared in Table 1. Five pairs of images are shown 

at different azimuth angles. The average correlation value of the 

original measurement image relative to the original simulation is 

0.5639. However, the average value for the translated measure-

ment images dramatically improved to 0.8076. Overall, the cor-

relation improved to 24%. 

III. NUMERICAL EXPERIMENTS 

The proposed approach was compared with the conventional 

VGG16 network. The proposed algorithm improves the proba-

bility of the target classification in five classes when the simula-

tion DB is used. There are two steps: CycleGAN for image 

translation and the VGG16 network for target classification. The 

first step generates simulation-like images using CycleGAN. 

The conventional approach is applied in the second step. Let us 

experiment with the conventional approach. Table 2 shows the 

training numbers of the simulation images and the testing numbers 

of measurement images. The resolution of the images is 30 cm 

× 30 cm. All SAR images are vertical-vertical (VV) imaginary. 

Table 3 shows the confusion matrix of the results of the con-

ventional approach.  

Due to the image discrepancy between the testing set and the 

training set, the accuracy is approximately 15%. The most im-

portant fact is that all testing sets are classified as class 2. The 

backscattered characteristics of class 2 are dominant in all classes. 

For the improvement of classification, complicated image adjust-

ment and verification processes should be required to reduce the 

discrepancy between measurement and simulation images. Usu-

ally, the measurement data cannot be equally distributed at all 

angles due to the difficulty of regular acquisition. Therefore, the 

      

      

       
(a)       (b)       (c)       (d)       (e)       (f) 

Fig. 7. Original, translated, and reconstructed images at various an-

gles: (a) original measurement images at EL = 15° and AZ 

= 1°, 43°, and 89°; (b) translated measurement images; (c) 

reconstructed measurement images; (d) original simulation 

images at EL = 14° and AZ = 0°, 44°, and 90°; (e) translated 

simulation images; and (f) reconstructed simulation images.

Table 1. Coefficient of correlation between measurement and simu-

lation SAR images 

 
Simulation SAR image DB at EL = 14°  

(AZ = 0°, 44°, 90°, 134°, and 178°)

EL = 15° AZ
Original measurement  

image 

Translated measurement 

image

1° 0.4358 0.8398

43° 0.5736 0.7848

89° 0.7052 0.8432

136° 0.5363 0.7787

180° 0.5687 0.7913

Average 0.5639 0.8076

Table 2. Number of training and testing images 

 
Number of images

1 2 3 4 5 Total

Training sets 7,020 7,020 2,340 4,680 2,340 23,400

Testing sets 47 126 259 205 196 833
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number of training sets is randomly distributed to each class for 

an unpaired image-to-image translation. There are two distinct 

problems. One is to generate simulation-like images. The other 

is using unbalanced datasets between measurement and simula-

tion images. The key ingredient processor is the unpaired meas-

urement to simulate image translation in the paper. In reality, 

there is only a small set of measurement data used as a training 

set. Therefore, the simulation data are randomly extracted in the 

same number as the measurement data. 

The summary of image sets for domain X  and Y  is shown 

in Table 4. Based on the proposed algorithm, the results of the 

target classification are given in Table 5. From the confusion 

matrix, the accuracy is approximately 80%. Fig. 8 shows the im-

provement and deterioration of each target class. Overall accuracy 

improved. The improvement of Class 5 is lower than those of the 

other classes. The reason is that the data of class 5 and the other 

classes are obtained from the heterogeneous SAR sensors. 

Fig. 9 shows the losses of adversarial and cycle consistency ver-

sus epochs. Here, epochs is 200, 𝛽ଵ = 0.9, 𝛽ଶ = 0.999, the 

learning rate 𝜇 = 10ିହ, and batch size is 16. In the top figure, 

the solid line indicates adversarial loss, and the dashed is cycle 

consistency loss. The bottom figure shows the CycleGAN loss. 

After 110 epochs, the error converged less than 1.0. 

Fig. 10 shows the loss of the VGG network versus epochs. The 

VGG network uses the object function as an adaptive moment 

estimation (Adam) [36]. The loss is converged to almost 0 after 10 epochs. 

IV. CONCLUSION 

The proposed approach has the unique feature of SAR-ATR 

by two distinct deep learning networks when the simulation DB  

Table 3. Confusion matrix of the conventional approach 

  
Predicted 

1 2 3 4 5 Total

Actual 1 0 47 0 0 0 0

 2 0 126 0 0 0 100

 3 0 259 0 0 0 0

 4 0 205 0 0 0 0

 5 0 196 0 0 0 0

 Total 0 833 0 0 0 15.1
The bold diagonal indicates that the prediction and the ground truth are 

same. 

 

Table 4. Number of measurement images in domain 𝑋 and simula-

tion images in domain 𝑌 for CycleGAN 

 
Number of images 

1 2 3 4 5 Total

Measurement images in 

domain 𝑋 

465 752 803 838 691 3,549

Simulation images in 

domain 𝑌 

465 752 803 838 691 3,549

 

Table 5. Confusion matrix of the proposed approach 

  
Predicted 

1 2 3 4 5 Total

Actual 1 42 2 2 1 0 89.4

 2 25 101 0 0 0 80.2

 3 3 0 242 5 9 93.4

 4 9 24 6 160 6 78.1

 5 10 13 35 21 117 59.7

 Total 89 140 285 187 132 79.5
The bold diagonal indicates that the prediction and the ground truth are 

same. 

 
Fig. 8. Improvement and deterioration of an MIT-ATR technique.

 

 
Fig. 9. Adversarial, cycle consistency, and CycleGAN losses versus 

epoch.
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Fig. 10. Loss of VGG versus epochs. 

 
is used. The key ingredient of the algorithm is to translate from 

measurement images to simulation-like images using CycleGAN. 

From the confusion matrix of five classes, the accuracy is approx-

imately 80%. The accuracy improved by more than 60%. The 

correlation is close to almost 80%. The measurement images 

are translated to the images very similarly to the simulation by 

CycleGAN. The proposed approach demonstrates that the sim-

ulation DB can easily be used without any complicated pre-pro-

cessing techniques. 
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