J Korean inst Electromagn Sci Search

CLOSE


Journal of the Korean Institute of Electromagnetic and Science 2005;5(2):49-60.
Efficient Performance Enhancement Scheme for Adaptive Antenna Arrays in a Rayleigh Fading and Multicell Environments
Kyung-Seok Kim, Bierng-Chearl Ahn, Ik-Gueu Choi
School Electrical and Computer Eng., Chungbuk National University
Abstract
In this paper, an efficient performance enhancement scheme for an adaptive antenna array under the flat and the frequency-selective Rayleigh fadings is proposed. The proposed signal enhancement scheme is the modified linear signal estimator which combines the rank N approximation by reducing noise eigenvalues(RANE) and Toeplitz matrix approximation(TMA) methods into the linear signal estimator. The proposed performance enhancement scheme is performed by not only reducing the noise component from the signal-plus-noise subspace using RANE but also having the theoretical property of noise-free signal using TMA. Consequently, the key idea of the proposed performance enhancement scheme is to greatly enhance the performance of an adaptive antenna array by removing all undesired noise effects from the post-correlation received signal. The proposed performance enhancement scheme applies at the Wiener maximal ratio combining(MRC) method which has been widely used as the conventional adaptive antenna array. It is shown through several simulation results that the performance of an adaptive antenna array using the proposed signal enhancement scheme is much superior to that of a system using the conventional method under several environments, i.e., a flat Rayleigh fading, a fast frequency-selective Rayleigh fading, a perfect/imperfect power control, a single cell, and a multicell.
Key words: Adaptive Antenna Array, Array Signal Processing, DS/CDMA
TOOLS
Share :
Facebook Twitter Linked In Google+
METRICS Graph View
  • 1,080 View
  • 7 Download
Related articles in JEES

ABOUT
ARTICLE CATEGORY

Browse all articles >

BROWSE ARTICLES
AUTHOR INFORMATION
Editorial Office
#706 Totoo Valley, 217 Saechang-ro, Yongsan-gu, Seoul 04376, Korea
Tel: +82-2-337-9666    Fax: +82-2-6390-7550    E-mail: admin-jees@kiees.or.kr                

Copyright © 2024 by The Korean Institute of Electromagnetic Engineering and Science.

Developed in M2PI

Close layer
prev next