1. M. Masoudi, M. G. Khafagy, A. Conte, A. El-Amine, B. Françoise, C. Nadjahi et al., "Green mobile netorks for 5G and beyond,"
IEEE Access, vol. 7, pp. 107270–107299, 2019.
2. E. K. Carlson, "What will 5G bring?
Engineering, vol. 6, no. 7, pp. 725–727, 2020.
3. A. Kristoffersson, S. Coradeschi, and A. Loutfi, "A review of mobile robotic telepresence,"
Advances in Human-Computer Interaction, vol. 2013, article no. 3, 2013.
https://doi.org/10.1155/2013/902316
4. S. Kamal, A. S. Mohammed, M. F. Bin Ain, F. Najmi, R. Hussin, Z. A. Ahmad, U. Ullah, M. Othman, and M. F. Ab Rahman, "An assessment of progress in 5.8 GHz quasi-lumped element resonator antennas,"
IETE Technical Review, vol. 38, no. 3, pp. 328–346, 2021.
5. I. A. Zubir, M. Othman, U. Ullah, S. Kamal, M. F. Ab Rahman, R. Hussin et al., "A low-profile hybrid multi-permittivity dielectric resonator antenna with perforated structure for Ku and K band applications,"
IEEE Access, vol. 8, pp. 151219–151228, 2020.
6. F. Jameel, Z. Hamid, F. Jabeen, S. Zeadally, and M. A. Javed, "A survey of device-to-device communications: research issues and challenges,"
IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 2133–2168, 2018.
7. M. N. Tehrani, M. Uysal, and H. Yanikomeroglu, "Device-to-device communication in 5G cellular networks: challenges, solutions, and future directions,"
IEEE Communications Magazine, vol. 52, no. 5, pp. 86–92, 2014.
8. J. Qiao, X. S. Shen, J. W. Mark, Q. Shen, Y. He, and L. Lei, "Nabling device-to-device communications in millimeter-wave 5G cellular networks," IEEE Communications Magazine, vol. 53, no. 1, pp. 209–215, 2015.
9. C. X. Mao, S. Gao, and Y. Wang, "Dual-band full-duplex Tx/Rx antennas for vehicular communications,"
IEEE Transactions on Vehicular Technology, vol. 67, no. 5, pp. 4059–4070, 2018.
10. A. Li and K. M. Luk, "Single-layer wideband end-fire dual-polarized antenna array for device-to-device communication in 5G wireless systems,"
IEEE Transactions on Vehicular Technology, vol. 69, no. 5, pp. 5142–5150, 2020.
11. U. Ullah, N. Mahyuddin, Z. Arifin, M. Z. Abdullah, and A. Marzuki, "Antenna in LTCC technologies: a review and the current state of the art,"
IEEE Antennas and Propagation Magazine, vol. 57, no. 2, pp. 241–260, 2015.
12. S. Kamal, A. S. Mohammed, M. F. Ain, F. Najmi, R. Hussin, Z. A. Ahmad, and et al, "28 GHz mmWave quasi-lumped element resonator antenna on air-substrate," In:
Proceedings of 2019 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE); Melacca, Malaysia. 2019, pp 1–4.
13. S. Kamal, A. S. Mohammed, M. F. Ain, U. Ullah, F. Najmi, R. Hussin, and et al, "A 28 GHz mmWave circular microstrip antenna with rectangular slots on air-substrate," In:
Proceedings of 2020 IEEE International RF and Microwave Conference (RFM); 2020, pp 1–4.
14. W. Hong, K. H. Baek, Y. Lee, Y. Kim, and S. T. Ko, "Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices,"
IEEE Communications Magazine, vol. 52, no. 9, pp. 63–69, 2014.
15. W. Roh, J. Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results,"
IEEE Communications Magazine, vol. 52, no. 2, pp. 106–113, 2014.
16. T. S. Rappaport, G. R. MacCartney, M. K. Samimi, and S. Sun, "Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design,"
IEEE Transactions on Communications, vol. 63, no. 9, pp. 3029–3056, 2015.
17. S. Kamal, M. F. B. Ain, U. Ullah, A. S. Mohammed, F. Najmi, R. Hussin et al., "Wheel-shaped miniature assembly of circularly polarized wideband microstrip antenna for 5G mmWave terminals,"
Alexandria Engineering Journal, vol. 60, no. 2, pp. 2457–2470, 2021.
18. D. Li, J. A. Wang, Y. Yu, Y. Liu, Z. Chen, and L. Yang, "Substrate integrated waveguide-based complementary split-ring resonator and its arrays for compact dual-wideband bandpass filter design,"
International Journal of RF and Microwave Computer-Aided Engineering, vol. 31, no. 2, article no. e22504, 2021.
https://doi.org/10.1002/mmce.22504
19. F. Wu, L. Xiang, Z. Jiang, C. Yu, and W. Hong, "A wideband dual-polarized magneto-electric dipole antenna for millimeter wave applications,"
Microwave and Optical Technology Letters, vol. 63, no. 5, pp. 1452–1457, 2021.
20. S. Kamal, A. S. Mohammed, M. F. Bin Ain, U. Ullah, R. Hussin, Z. Arifin Ahmad, M, Othman, and M. F. Ab Rahman, "A novel negative meander line design of microstrip antenna for 28 GHz mmwave wireless communications,"
Radioengineering, vol. 29, no. 3, pp. 479–485, 2020.
21. S. Kamal, A. S. Mohammed, M. F. B. Ain, F. Najmi, R. Hussin, Z. A. Ahmad, U. Ullah, M. Othman, and M. F. A. Rahman, "A novel lumped LC resonator antenna with air-substrate for 5G mobile terminals,"
Progress in Electromagnetics Research Letters, vol. 88, pp. 75–81, 2020.
22. W. Su, J. Li, and R. H. Liu, "A compact double-layer wideband circularly polarized microstrip antenna with parasitic elements,"
International Journal of RF and Microwave Computer-Aided Engineering, vol. 31, no. 1, article no. e22471, 2021.
https://doi.org/10.1002/mmce.22471
23. S. Kamal and A. Chaudhari, "Printed meander line MIMO antenna integrated with air gap, DGS and RIS: low mutual coupling design for LTE applications," Progress in Electromagnetics Research C, vol. 71, pp. 149–159, 2017.
24. C. A. Balanis, Antenna Theory: Analysis and Design. New York, NY: Wiley, 2016.
25. U. Ullah and S. Koziel, "A geometrically simple compact wideband circularly polarized antenna,"
IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 6, pp. 1179–1183, 2019.
26. N. Nguyen-Trong, A. Piotrowski, L. Hall, and C. Fumeaux, "A frequency-and polarization-reconfigurable circular cavity antenna,"
IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 999–1002, 2016.
27. U. Ullah, S. Koziel, and I. B. Mabrouk, "Rapid redesign and bandwidth/size tradeoffs for compact wideband circular polarization antennas using inverse surrogates and fast EM-based parameter tuning,"
IEEE Transactions on Antennas and Propagation, vol. 68, no. 1, pp. 81–89, 2019.
28. U. Ullah, I. B. Mabrouk, and S. Koziel, "A compact circularly polarized antenna with directional pattern for wearable off-body communications,"
IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 12, pp. 2523–2527, 2019.
29. U. Ullah, I. B. Mabrouk, and S. Koziel, "Enhanced-performance circularly polarized MIMO antenna with polarization/pattern diversity,"
IEEE Access, vol. 8, pp. 11887–11895, 2020.
30. W. H. Zhang, W. J. Lu, and K. W. Tam, "Circularly polarized complementary antenna with tilted beam based on orthogonal dipoles,"
IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 8, pp. 1406–1410, 2018.
31. P. H. Rao, G. Praveen, C. Anukumar, G. Kailash, and Y. K. Verma, "Circularly polarised printed tilted beam antenna,"
IET Microwaves, Antennas & Propagation, vol. 13, no. 4, pp. 510–518, 2019.
32. E. B. Lima, S. A. Matos, J. R. Costa, C. A. Fernandes, and N. J. Fonseca, "Circular polarization wide-angle beam steering at Ka-band by in-plane translation of a plate lens antenna,"
IEEE Transactions on Antennas and Propagation, vol. 63, no. 12, pp. 5443–5455, 2015.
33. T. L. Zhang, X. Q. Yang, D. L. Fei, and Z. H. Yan, "Single-arm helical antenna with width of arm varying periodically for tilted beam,"
Electronics Letters, vol. 51, no. 10, pp. 736–738, 2015.
34. H. Nakano, J. Eto, Y. Okabe, and J. Yamauchi, "Tilted-and axial-beam formation by a single-arm rectangular spiral antenna with compact dielectric substrate and conducting plane,"
IEEE Transactions on Antennas and Propagation, vol. 50, no. 1, pp. 17–24, 2002.
35. H. Nakano, N. Aso, N. Mizobe, and J. Yamauchi, "Low-profile composite helical-spiral antenna for a circularly-polarized tilted beam,"
IEEE Transactions on Antennas and Propagation, vol. 59, no. 7, pp. 2710–2713, 2011.
36. K. Hirose, S. Okazaki, and H. Nakano, "Double-loop antennas for a circularly polarized tilted beam,"
Electronics and Communications in Japan (Part I: Communications), vol. 86, no. 12, pp. 12–20, 2003.
37. B. Li, S. W. Liao, and Q. Xue, "Omnidirectional circularly polarized antenna combining monopole and loop radiators,"
IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 607–610, 2013.
38. D. Gopi, A. R. Vadaboyina, and J. R. K. Dabbakuti, "DGS based monopole circular-shaped patch antenna for UWB applications,"
SN Applied Sciences, vol. 3, article no. 198, 2021.
https://doi.org/10.1007/s42452-020-04123-w
39. G. Dattatreya, K. Kousalya, Y. Jyothirmayi, M. V. Krishna, D. Harsha, P. A. V. Sri, and K. K. Naik, "Analysis of complementary split ring resonators on rectangular patch with inset feed for X-band application," In:
Proceedings of 2017 International Conference of Electronics, Communication and Aerospace Technology (ICECA); Coimbatore, India. 2017, pp 248–250.
40. R. Azim, M. T. Islam, and N. Misran, "Compact tapered-shape slot antenna for UWB applications,"
IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 1190–1193, 2011.
41. F. Gharakhili, M. Fardis, G. R. Dadashzadeh, A. Ahmadi, and N. Hojjat, "Circular slot with a novel circular microstrip open ended microstrip feed for UWB applications,"
Progress in Electromagnetics Research, vol. 68, pp. 161–167, 2007.
42. J. Liang, C. C. Chiau, X. Chen, and C. G. Parini, "Printed circular disc monopole antenna for ultra-wideband applications,"
Electronics Letters, vol. 40, no. 20, pp. 1246–1247, 2004.
43. C. J. Chi, "A slot loaded circularly polarized patch antenna for UHF RFID reader,"
IEEE Transactions on Antennas and Propagation, vol. 60, no. 10, pp. 4516–4521, 2012.
44. U. D. Yalavarthi, M. S. S. Rukmini, and B. T. Madhav, "A compact conformal printed dipole antenna for 5G based vehicular communication applications,"
Progress in Electromagnetics Research C, vol. 85, pp. 191–208, 2018.
45. W. N. Hardy and L. A. Whitehead, "Split-ring resonator for use in magnetic resonance from 200–2000 MHz,"
Review of Scientific Instruments, vol. 52, no. 2, pp. 213–216, 1981.
46. W. Froncisz and J. S. Hyde, "The loop-gap resonator: a new microwave lumped circuit ESR sample structure,"
Journal of Magnetic Resonance, vol. 47, no. 3, pp. 515–521, 1982.
47. D. M. Roberts, A. P. Clements, R. McDonald, J. S. Bobowski, and T. Johnson, "Mid-range wireless power transfer at 100 MHz using magnetically coupled loop-gap resonators,"
IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 7, pp. 3510–3527, 2021.
48. J. S. Bobowski and A. P. Clements, "Permittivity and conductivity measured using a novel toroidal split-ring resonator,"
IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 6, pp. 2132–2138, 2017.
49. W. N. Hardy, D. A. Bonn, D. C. Morgan, R. Liang, and K. Zhang, "Precision measurements of the temperature dependence of λ in YBa2Cu3O6.95: strong evidence for nodes in the gap function,"
Physical Review Letters, vol. 70, no. 25, article no. 3999, 1993.
https://doi.org/10.1103/PhysRevLett.70.3999
50. J. W. Sidabras, R. R. Mett, W. Froncisz, T. G. Camenisch, J. R. Anderson, and J. S. Hyde, "Multipurpose EPR loop-gap resonator and cylindrical TE011 cavity for aqueous samples at 94 GHz,"
Review of Scientific Instruments, vol. 78, no. 3, article no. 034701, 2007.
https://doi.org/10.1063/1.2709746
51. Y. Twig, E. Suhovoy, and A. Blank, "Sensitive surface loop-gap microresonators for electron spin resonance,"
Review of Scientific Instruments, vol. 81, no. 10, article no. 104703, 2010.
https://doi.org/10.1063/1.3488365
52. Y. Zhang, J. Liu, Z. Liang, and Y. Long, "A wide-bandwidth monopolar patch antenna with dual-ring couplers,"
International Journal of Antennas and Propagation, vol. 2014, article no. 980120, 2014.
https://doi.org/10.1155/2014/980120
53. L. Guo, M. C. Tang, and M. Li, "A low-profile dual-layer patch antenna with a circular polarizer consisting of dual semicircular resonators,"
Sensors, vol. 18, no. 6, article no. 1773, 2018.
https://doi.org/10.3390/s18061773
54. A. S. Mohammed, S. Kamal, M. F. bin Ain, R. Hussin, Z. A. Ahmad, U. Ullah, M. Othman, and M. F. Ab Rahman, "Mathematical modelling on the effects of conductive material and substrate thickness for air substrate microstrip patch antenna," The Applied Computational Electromagnetics Society Journal (ACES), vol. 35, no. 6, pp. 674–683, 2020.
55. D. M. Pozar, Microwave Engineering. New York, NY: Wiley, 2009.
56. U. Ullah, M. Al-Hasan, S. Koziel, and I. B. Mabrouk, "A series inclined slot-fed circularly polarized antenna for 5G 28 GHz applications,"
IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 3, pp. 351–355, 2021.
57. B. Feng, J. Lai, Q. Zeng, and K. L. Chung, "A dual-wideband and high gain magneto-electric dipole antenna and its 3D MIMO system with metasurface for 5G/WiMAX/WLAN/X-band applications,"
IEEE Access, vol. 6, pp. 33387–33398, 2018.
58. J. Sun and K. M. Luk, "Wideband linearly-polarized and circularly-polarized aperture-coupled magneto-electric dipole antennas fed by microstrip line with electromagnetic bandgap surface,"
IEEE Access, vol. 7, pp. 43084–43091, 2019.
59. C. Song, E. L. Bennett, J. Xiao, and Y. Huang, "Multi-Mode hybrid antennas using liquid dielectric resonator and magneto-electric dipole,"
IEEE Transactions on Antennas and Propagation, vol. 69, no. 6, pp. 3132–3143, 2020.
60. W. El-Halwagy, R. Mirzavand, J. Melzer, M. Hossain, and P. Mousavi, "Investigation of wideband substrate-integrated vertically-polarized electric dipole antenna and arrays for mm-wave 5G mobile devices,"
IEEE Access, vol. 6, pp. 2145–2157, 2017.