1. C. Waldschmidt, J. Hasch, and W. Menzel, "Automotive radar: from first efforts to future systems,"
IEEE Journal of Microwaves, vol. 1, no. 1, pp. 135–148, 2021.
https://doi.org/10.1109/JMW.2020.3033616
2. G. M. Brooker, "Understanding millimetre wave FMCW radars," In: Proceedings of the 1st International Conference on Sensing Technology; Palmerston North, New Zealand. 2005, pp 152–157.
3. S. Heuel, Automotive radar technology, market and test requirements. Rohde & Schwarz, Munich, Germany: 2018.
4. M. Goppelt, H. L. Blocher, and W. Menzel, "Automotive radar–investigation of mutual interference mechanisms,"
Advances in Radio Science, vol. 8, pp. 55–60, 2010.
https://doi.org/10.5194/ars-8-55-2010
5. Z. Xu and Q. Shi, "Interference mitigation for automotive radar using orthogonal noise waveforms,"
IEEE Geoscience and Remote Sensing Letters, vol. 15, no. 1, pp. 137–141, 2018.
https://doi.org/10.1109/LGRS.2017.2777962
6. T. N. Luo, C. H. E. Wu, and Y. J. E. Chen, "A 77-GHz CMOS automotive radar transceiver with anti-interference function,"
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 12, pp. 3247–3255, 2013.
https://doi.org/10.1109/TCSI.2013.2265974
7. M. Alhumaidi and M. Wintermantel, "Interference avoidance and mitigation in automotive radar," In:
Proceedings of 2020 17th European Radar Conference (EuRAD); Utrecht, Netherlands. 2021, pp 172–175.
https://doi.org/10.1109/EuRAD48048.2021.00053
8. F. Uysal and S. Sanka, "Mitigation of automotive radar interference," In:
Proceedings of 2018 IEEE Radar Conference (RadarConf18); Oklahoma City, OK, USA. 2018, pp 405–410.
https://doi.org/10.1109/RADAR.2018.8378593
9. M. LaManna, P. Monsurro, P. Tommasino, and A. Trifiletti, "Spectrum estimation for cognitive radar," In:
Proceedings of 2015 European Radar Conference (EuRAD); Paris, France. 2015, pp 193–196.
https://doi.org/10.1109/EuRAD.2015.7346270
10. Z. Tian and G. B. Giannakis, "Compressed sensing for wideband cognitive radios," In:
Proceedings of 2007 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); Honolulu, HI, USA. 2017, pp 1357–1360.
https://doi.org/10.1109/ICASSP.2007.367330
11. P. Stinco, M. Greco, F. Gini, and M. La Manna, "Compressed spectrum sensing in cognitive radar systems," In:
Proceedings of 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); Florence, Italy. 2014, pp 81–85.
https://doi.org/10.1109/ICASSP.2014.6853562
12. J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G. Baraniuk, "Beyond Nyquist: efficient sampling of sparse bandlimited signals,"
IEEE Transactions on Information Theory, vol. 56, no. 1, pp. 520–544, 2010.
https://doi.org/10.1109/TIT.2009.2034811
13. M. Mishali, A. Elron, and Y. C. Eldar, "Sub-Nyquist processing with the modulated wideband converter," In:
Proceedings of 2010 IEEE International Conference on Acoustics, Speech and Signal Processing; Dallas, TX, USA. 2010, pp 3626–3629.
https://doi.org/10.1109/ICASSP.2010.5495911
15. G. Hakobyan, M. Fink, A. Soyolyn, N. Mansour, and D. Dahlhaus, "Sweep-based spectrum sensing method for interference-aware cognitive automotive radar," In:
Proceedings of 2020 IEEE Radar Conference (RadarConf20); Florence, Italy. 2020, pp 1–6.
https://doi.org/10.1109/RadarConf2043947.2020.9266361
16. A. Meta, "Signal processing of FMCW synthetic aperture radar data," Ph.D. dissertation, Delft University of Technology. Delft, Netherlands, 2006.
17. Z. Yang and A. Mani, Interference mitigation for AWR/IWR devices. Texas Instruments Inc, Dallax, TX, USA: 2020.