1. N. K. Mallat, M. Ishtiaq, A. Ur Rehman, and A. Iqbal, "Millimeter- wave in the face of 5G communication potential applications,"
IETE Journal of Research, vol. 68, no. 4, pp. 2522–2530, 2022.
https://doi.org/10.1080/03772063.2020.1714489
2. M. K. Samimi and T. S. Rappaport, "3-D millimeter-wave statistical channel model for 5G wireless system design,"
IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 7, pp. 2207–2225, 2016.
https://doi.org/10.1109/TMTT.2016.2574851
3. S. J. Yoon and J. Choi, "A low-profile broadband array antenna for home repeater applications,"
Journal of Electromagnetic Engineering and Science, vol. 18, no. 4, pp. 261–266, 2018.
https://doi.org/10.26866/jees.2018.18.4.261
4. G. S. Karthikeya, S. K. Koul, A. K. Poddar, and U. L. Rohde, "Compact bent-corner orthogonal beam switching antenna module for 5G mobile devices,"
Journal of Electromagnetic Engineering and Science, vol. 22, no. 1, pp. 74–83, 2022.
https://doi.org/10.26866/jees.2022.1.r.63
5. X. D. Huang and C. H. Cheng, "Wideband slot antenna with matching resonators,"
Journal of Electromagnetic Waves and Applications, vol. 24, no. 1, pp. 133–140, 2010.
https://doi.org/10.1163/156939310790322046
6. S. H. Wi, Y. S. Lee, and J. G. Yook, "Wideband microstrip patch antenna with U-shaped parasitic elements,"
IEEE Transactions on Antennas and Propagation, vol. 55, no. 4, pp. 1196–1199, 2007.
https://doi.org/10.1109/TAP.2007.893427
7. J. Ansari, P. Singh, N. P. Yadav, and B. Vishvakarma, "Analysis of shorting pin loaded half disk patch antenna for wideband operation,"
Progress in Electromagnetics Research C, vol. 6, pp. 179–192, 2009.
http://dx.doi.org/10.2528/PIERC09011203
8. M. Xue, W. Wan, Q. Wang, and L. Cao, "Low-profile millimetre-wave wideband microstrip antenna with parasitic patch arrays,"
IET Microwaves, Antennas & Propagation, vol. 15, no. 4, pp. 364–370, 2021.
https://doi.org/10.1049/mia2.12048
9. J. Wu, X. Ren, Z. Wang, and Y. Yin, "Broadband circularly polarized antenna with L-shaped strip feeding and shorting-pin loading,"
IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 1733–1736, 2014.
https://doi.org/10.1109/LAWP.2014.2354050
10. Y. F. Cheng, Y. X. Wang, J. Feng, J. L. Zhong, C. Liao, and X. Ding, "A simple wide-angular scanning phased array with wideband filtering response,"
IEEE Transactions on Antennas and Propagation, vol. 70, no. 9, pp. 7703–7712, 2022.
https://doi.org/10.1109/TAP.2022.3205218
12. N. W. Liu, S. Gao, L. Zhu, L. Y. Ji, L. Yang, and H. L. Zheng, "Low-profile microstrip patch antenna with simultaneous enhanced bandwidth, beamwidth, and cross-polarisation under dual resonance,"
IET Microwaves, Antennas & Propagation, vol. 14, no. 5, pp. 360–365, 2020.
https://doi.org/10.1049/iet-map.2019.0565
14. H. Jin, K. S. Chin, W. Che, C. C. Chang, H. J. Li, and Q. Xue, "Differential-fed patch antenna arrays with low cross polarization and wide bandwidths,"
IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 1069–1072, 2014.
https://doi.org/10.1109/LAWP.2014.2328352
15. H. Saeidi-Manesh and G. Zhang, "High-isolation, low cross-polarization, dual-polarization, hybrid feed microstrip patch array antenna for MPAR application,"
IEEE Transactions on Antennas and Propagation, vol. 66, no. 5, pp. 2326–2332, 2018.
https://doi.org/10.1109/TAP.2018.2811780
16. B. Qian, X. Chen, L. Zhao, J. Chen, and A. A. Kishk, "Reduced cross-polarization and backside radiations for rectangular microstrip antennas using defected ground structure combined with decoupling structure,"
IEEE Antennas and Wireless Propagation Letters, vol. 22, no. 3, pp. 517–521, 2023.
https://doi.org/10.1109/LAWP.2022.3217119
17. P. S. Kildal, E. Alfonso, A. Valero-Nogueira, and E. Rajo-Iglesias, "Local metamaterial-based waveguides in gaps between parallel metal plates,"
IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 84–87, 2008.
https://doi.org/10.1109/LAWP.2008.2011147
18. A. F. Elshafey, E. K. AbuSaif, and M. A. Abdalla, "A wideband high-power ridge gap waveguide power divider for high-power division sub-systems applications,"
IETE Journal of Research, vol. 69, no. 2, pp. 960–966, 2023.
https://doi.org/10.1080/03772063.2020.1844077
19. S. I. Shams and A. A. Kishk, "Printed texture with triangle flat pins for bandwidth enhancement of the ridge gap waveguide,"
IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 6, pp. 2093–2100, 2017.
https://doi.org/10.1109/TMTT.2017.2650230
20. M. M. Mahmoud Ali, S. I. Shams, and A. Sebak, "Ultra-wideband printed ridge gap waveguide hybrid directional coupler for millimetre wave applications,"
IET Microwaves, Antennas & Propagation, vol. 13, no. 8, pp. 1181–1187, 2019.
https://doi.org/10.1049/iet-map.2018.5511
21. E. Pucci, E. Rajo-Iglesias, and P. S. Kildal, "New microstrip gap waveguide on mushroom-type EBG for packaging of microwave components,"
IEEE Microwave and Wireless Components Letters, vol. 22, no. 3, pp. 129–131, 2012.
https://doi.org/10.1109/LMWC.2011.2182638
22. A. U. Zaman and P. S. Kildal, "Wide-band slot antenna arrays with single-layer corporate-feed network in ridge gap waveguide technology,"
IEEE Transactions on Antennas and Propagation, vol. 62, no. 6, pp. 2992–3001, 2014.
https://doi.org/10.1109/TAP.2014.2309970
23. M. M. M. Ali and A. R. Sebak, "2-D scanning magnetoelectric dipole antenna array fed by RGW butler matrix,"
IEEE Transactions on Antennas and Propagation, vol. 66, no. 11, pp. 6313–6321, 2018.
https://doi.org/10.1109/TAP.2018.2869228
24. A. Dadgarpour, M. S. Sorkherizi, and A. A. Kishk, "Wideband low-loss magnetoelectric dipole antenna for 5G wireless network with gain enhancement using meta lens and gap waveguide technology feeding,"
IEEE Transactions on Antennas and Propagation, vol. 64, no. 12, pp. 5094–5101, 2016.
https://doi.org/10.1109/TAP.2016.2620522
25. J. H. Ou, J. Huang, J. Liu, J. Tang, and X. Y. Zhang, "High-gain circular patch antenna and array with introduction of multiple shorting pins,"
IEEE Transactions on Antennas and Propagation, vol. 68, no. 9, pp. 6506–6515, 2020.
https://doi.org/10.1109/TAP.2020.2983793