1. G. J. Kim, S. Kim, J. H. Lee, I. S. Kim, Y. S. Lee, and J. I. Kim, "Industrial applications of THz imaging based on resonant slit-type probe,"
Journal of Electromagnetic Engineering and Science, vol. 22, no. 3, pp. 179–185, 2022.
https://doi.org/10.26866/jees.2022.3.r.75
2. A. T. Mobashsher and A. M. Abbosh, "Artificial human phantoms: Human proxy in testing microwave apparatuses that have electromagnetic interaction with the human body,"
IEEE Microwave Magazine, vol. 16, no. 6, pp. 42–62, 2015.
https://doi.org/10.1109/MMM.2015.2419772
3. O. Spathmann, M. Zang, J. Streckert, V. Hansen, M. Saviz, T. M. Fiedler, K. Statnikov, U. R. Pfeiffer, and M. Clemens, "Numerical computation of temperature elevation in human skin due to electromagnetic exposure in the THz frequency range,"
IEEE Transactions on Terahertz Science and Technology, vol. 5, no. 6, pp. 978–989, 2015.
https://doi.org/10.1109/TTHZ.2015.2476962
4. M. Simko and M. O. Mattsson, "5G wireless communication and health effects: a pragmatic review based on available studies regarding 6 to 100 GHz,"
International Journal of Environmental Research and Public Health, vol. 16, no. 18, article no. 3406, 2019.
https://doi.org/10.3390/ijerph16183406
5. A. Kazemipour, T. Kleine-Ostmann, T. Schrader, D. Allal, M. Charles, L. Zilberti, M. Borsero, O. Bottauscio, and M. Chiampi, "Safety checkpoints,"
IEEE Microwave Magazine, vol. 17, no. 6, pp. 76–81, 2016.
https://doi.org/10.1109/MMM.2016.2538514
6. N. Betzalel, Y. Feldman, and P. B. Ishai, "The modeling of the absorbance of sub-THz radiation by human skin,"
IEEE Transactions on Terahertz Science and Technology, vol. 7, no. 5, pp. 521–528, 2017.
https://doi.org/10.1109/TTHZ.2017.2736345
7. A. L. Kapetanovic and D. Poljak, "Assessment of incident power density on spherical head model up to 100 GHz,"
IEEE Transactions on Electromagnetic Compatibility, vol. 64, no. 5, pp. 1296–1303, 2022.
https://doi.org/10.1109/TEMC.2022.3183071
8. X. Cao, H. Sato, K. D. Xu, W. Jiang, S. Gong, and Q. Chen, "A systematic method for efficient wireless powering to implantable biomedical devices,"
IEEE Transactions on Antennas and Propagation, vol. 71, no. 3, pp. 2745–2757, 2023.
https://doi.org/10.1109/TAP.2023.3240005
9. J. Lee, A. K. Lee, S. E. Hong, H. D. Choi, and K. Y. Jung, "Numerical modeling of smartphones with WCDMA, LTE, and WLAN bands for epidemiological studies,"
Journal of Electromagnetic Engineering and Science, vol. 22, no. 1, pp. 41–47, 2022.
https://doi.org/10.26866/jees.2022.1.r.59
10. J. Lee, A. K. Lee, S. E. Hong, H. D. Choi, and K. Y. Jung, "Development of a numerical tablet model in WLAN band for SAR study,"
Journal of Electromagnetic Engineering and Science, vol. 22, no. 5, pp. 544–549, 2022.
https://doi.org/10.26866/jees.2022.5.r.120
11. R. Schiavoni, G. Maietta, E. Filieri, A. Masciullo, and A. Cataldo, "Microwave reflectometry sensing system for low-cost in-vivo skin cancer diagnostics,"
IEEE Access, vol. 11, pp. 13918–13928, 2023.
https://doi.org/10.1109/ACCESS.2023.3243843
12. S. Dogu, H. Onal, T. Yilmaz, I. Akduman, and M. N. Akinci, "Continuous monitoring of hyperthermia treatment of breast tumors with singular sources method,"
IEEE Access, vol. 11, pp. 6584–6593, 2023.
https://doi.org/10.1109/ACCESS.2023.3237920
13. L. V. Tung and C. Seo, "A miniaturized implantable antenna for wireless power transfer and communication in biomedical applications,"
Journal of Electromagnetic Engineering and Science, vol. 22, no. 4, pp. 440–446, 2022.
https://doi.org/10.26866/jees.2022.4.r.107
14. K. Sasaki, K. Wake, and S. Watanabe, "Measurement of the dielectric properties of the epidermis and dermis at frequencies from 0.5 GHz to 110 GHz,"
Physics in Medicine & Biology, vol. 59, no. 16, pp. 4739–4747, 2014.
https://doi.org/10.1088/0031-9155/59/16/4739
15. D. Popovic, L. McCartney, C. Beasley, M. Lazebnik, M. Okoniewski, S. C. Hagness, and J. Booske, "Precision open-ended coaxial probes for
in vivo and
ex vivo dielectric spectroscopy of biological tissues at microwave frequencies,"
IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 5, pp. 1713–1722, 2005.
https://doi.org/10.1109/TMTT.2005.847111
16. A. La Gioia, M. O’Halloran, and E. Porter, "Modelling the sensing radius of a coaxial probe for dielectric characterisation of biological tissues,"
IEEE Access, vol. 6, pp. 46516–46526, 2018.
https://doi.org/10.1109/ACCESS.2018.2866703
17. D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, "Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies,"
IEEE Transactions on Instrumentation and Measurement, vol. 39, no. 2, pp. 387–394, 1990.
https://doi.org/10.1109/19.52520
18. D. Bourreau, A. Peden, and S. Le Maguer, "A quasi-optical free-space measurement setup without time-domain gating for material characterization in the W-band,"
IEEE Transactions on Instrumentation and Measurement, vol. 55, no. 6, pp. 2022–2028, 2006.
https://doi.org/10.1109/TIM.2006.884283
19. A. M. Nicolson and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques,"
IEEE Transactions on Instrumentation and Measurement, vol. 19, no. 4, pp. 377–382, 1970.
https://doi.org/10.1109/TIM.1970.4313932
20. W. B. Weir, "Automatic measurement of complex dielectric constant and permeability at microwave frequencies,"
Proceedings of the IEEE, vol. 62, no. 1, pp. 33–36, 1974.
https://doi.org/10.1109/PROC.1974.9382
21. J. Baker-Jarvis, E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method,"
IEEE Transactions on Microwave Theory and Techniques, vol. 38, no. 8, pp. 1096–1103, 1990.
https://doi.org/10.1109/22.57336
22. D. V. Blackham, "Free space characterization of materials," In: Proceedings of the Antenna Measurement Techniques Association Symposium; Dallas, TX, USA. 1993, pp 58–60.
23. P. G. Bartley and S. B. Begley, "Improved free-space S-parameter calibration," In:
Proceedings of 2005 IEEE Instrumentation and Measurement Technology Conference,; Ottawa, Canada. 2005, pp 372–375.
https://doi.org/10.1109/IMTC.2005.1604138
24. A. Ferrero and U. Pisani, "Two-port network analyzer calibration using an unknown ‘thru’,"
IEEE Microwave and Guided Wave Letters, vol. 2, no. 12, pp. 505–507, 1992.
https://doi.org/10.1109/75.173410
25. J. Randa, W. Wiatr, and R. L. Billinger, "Comparison of adapter characterization methods,"
IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 12, pp. 2613–2620, 1999.
https://doi.org/10.1109/22.809014
26. J. S. Kang, "Free-space unknown thru measurement using planar offset short for material characterization,"
Journal of Electromagnetic Engineering and Science, vol. 22, no. 5, pp. 555–562, 2022.
https://doi.org/10.26866/jees.2022.5.r.122
27. J. S. Kang, "Free-space two-tier one-port calibration using a planar offset short for material measurement,"
Journal of Electromagnetic Engineering and Science, vol. 22, no. 6, pp. 656–664, 2022.
https://doi.org/10.26866/jees.2022.6.r.135
28. J. S. Kang and J. H. Kim, "Planar offset short applicable to the calibration of a free-space material measurement system in W-band,"
Journal of Electromagnetic Engineering and Science, vol. 21, no. 1, pp. 51–59, 2021.
https://doi.org/10.26866/jees.2021.21.1.51
29. K. Sasaki, H. Segawa, M. Mizuno, K. Wake, S. Watanabe, and O. Hashimoto, "Development of the complex permittivity measurement system for high-loss biological samples using the free space method in quasi-millimeter and millimeter wave bands,"
Physics in Medicine & Biology, vol. 58, no. 5, pp. 1625–1633, 2013.
https://doi.org/10.1088/0031-9155/58/5/1625
30. J. S. Kang, Y. S. Lee, and Y. Park, "Free-space biological tissue measurement at W-band," In:
Proceedings of 2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNCURSI); Portland, OR, USA. 2023, pp 1669–1670.
https://doi.org/10.1109/USNC-URSI52151.2023.10238057
32. J. S. Kang, J. H. Kim, C. Cho, and D. C. Kim, "W-band permittivity measurements using a free-space material measurement technique,"
The Journal of Korean Institute of Electromagnetic Engineering and Science, vol. 24, no. 3, pp. 253–258, 2013.
https://doi.org/10.5515/KJKIEES.2013.24.3.253