1. T. Nakamura, A. Benjebbour, Y. Kishiyama, S. Suyama, and T. Imai, "5G radio access: requirements, concept and experimental trials,"
IEICE Transactions on Communications, vol. 98, no. 8, pp. 1397–1406, 2015.
https://doi.org/10.1587/transcom.E98.B.1397
2. M. D. Renzo, M. Debbah, D. T. Phan-Huy, A. Zappone, M. S. Alouini, C. Yuen et al., "Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come,"
EURASIP Journal on Wireless Communications and Networking, vol. 2019, article no. 129, 2019.
https://doi.org/10.1186/s13638-019-1438-9
3. Q. Wu and R. Zhang, "Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming,"
IEEE Transactions on Wireless Communications, vol. 18, no. 11, pp. 5394–5409, 2019.
https://doi.org/10.1109/TWC.2019.2936025
4. D. Kitayama, Y. Hama, K. Goto, K. Miyachi, T. Motegi, and O. Kagaya, "Transparent dynamic metasurface for a visually unaffected reconfigurable intelligent surface: controlling transmission/reflection and making a window into an RF lens,"
Optics Express, vol. 29, no. 18, pp. 29292–29307, 2021.
https://doi.org/10.1364/OE.435648
5. J. H. Shin and C. W. Jung, "Analysis of optical and microwave transmission by linewidth variation of metal mesh for FSS in GPTS,"
IEEE Microwave and Wireless Technology Letters, vol. 34, no. 5, pp. 580–582, 2024.
https://doi.org/10.1109/LMWT.2024.3383110
6. D. T. Nguyen, J. N. Lee, J. I. Moon, and C. W. Jung, "Single-layer frequency-selective surface on window glass for 5G indoor communications,"
IEEE Antennas and Wireless Propagation Letters, vol. 23, no. 5, pp. 1558–1562, 2024.
https://doi.org/10.1109/LAWP.2024.3362590
7. H. Chen, H. Chen, X. Xiu, Q. Xue, and W. Che, "Transparent FSS on glass window for signal selection of 5G millimeter-wave communication,"
IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 12, pp. 2319–2323, 2021.
https://doi.org/10.1109/LAWP.2021.3110053
8. V. Singh, M. Khalily, S. B. Amlashi, J. D. Carey, and R. Tafazolli, "Fully-transparent transmission surface for outdoor-indoor mmWave coverage enhancement," In:
Proceedings of 2020 International Conference on UK-China Emerging Technologies (UCET); Glasgow, UK. 2020;pp 1–4.
https://doi.org/10.1109/UCET51115.2020.9205355
9. Z. Lu, Y. Liu, H. Wang, Y. Zhang, and J. Tan, "Optically transparent frequency selective surface based on nested ring metallic mesh,"
Optics Express, vol. 24, no. 23, pp. 26109–26118, 2016.
https://doi.org/10.1364/OE.24.026109
10. N. B. M. Nafis, M. A. Himdi, M. K. Rahim, O. Ayop, and R. Dewan, "Optically transparent tri-wideband mosaic frequency selective surface with low cross-polarisation,"
Materials, vol. 15, no. 2, article no. 622, 2022.
https://doi.org/10.3390/ma15020622
11. S. K. Sharma, D. Zhou, A. Luttgen, and C. D. Sarris, "A micro copper mesh-based optically transparent triple-band frequency selective surface,"
IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 1, pp. 202–206, 2019.
https://doi.org/10.1109/LAWP.2018.2886305
12. J. Li, L. Shi, H. Chen, L. Qu, Y. Yi, Q. Zhang, S. Fu, Y. Ma, and J. Wang, "High angular stability and polarization insensitive optically transparent bandpass frequency selective surface based on micro copper mesh,"
Optics Communications, vol. 536, article no. 129365, 2023.
https://doi.org/10.1016/j.optcom.2023.129365
13. M. Safari, N. P. Kherani, and G. V. Eleftheriades, "Multi-functional metasurface: visibly and RF transparent, NIR control and low thermal emissivity,"
Advanced Optical Materials, vol. 9, no. 17, article no. 2100176, 2021.
https://doi.org/10.1002/adom.202100176
14. P. D. Tung and C. W. Jung, "High optical visibility and shielding effectiveness metal mesh film for microwave oven application,"
IEEE Transactions on Electromagnetic Compatibility, vol. 62, no. 4, pp. 1076–1081, 2020.
https://doi.org/10.1109/TEMC.2019.2927923
15. K. Han, H. B. Shim, and J. W. Hahn, "Optically transparent single-layer frequency-selective surface absorber for dualband millimeter-wave absorption and low-infrared emissivity,"
Advanced Photonics Research, vol. 4, no. 4, article no. 2200009, 2023.
https://doi.org/10.1002/adpr.202200009
16. G. Oliveri, F. Zardi, G. Gottardi, and A. Massa, "Optically-transparent EM Skins for outdoor-to-indoor mm-wave wireless communications,"
IEEE Access, vol. 12, pp. 65178–65191, 2024.
https://doi.org/10.1109/ACCESS.2024.3397186
17. B. Chen, B. Wu, H. R. Zu, H. Y. Xie, Y. Liu, and D. P. He, "Wideband optically transparent transmitarrays with fine metal line structure,"
IEEE Antennas and Wireless Propagation Letters, vol. 23, no. 6, pp. 1700–1704, 2024.
https://doi.org/10.1109/LAWP.2024.3367413
18. B. Kim and J. Oh, "Single-glass-layer optically transparent transmitarray with high aperture efficiency and low profile at 5G millimeter-wave band,"
IEEE Transactions on Antennas and Propagation, vol. 71, no. 11, pp. 9036–9041, 2023.
https://doi.org/10.1109/TAP.2023.3305876
19. K. Du, O. Ozdemir, F. Erden, and I. Guvenc, "Subterahertz and mmwave penetration loss measurements for indoor environments," In:
Proceedings of 2021 IEEE International Conference on Communications Workshops (ICC Workshops); Montreal, Canada. 2021;pp 1–6.
https://doi.org/10.1109/ICCWorkshops50388.2021.9473898
20. T. Chaloun, S. Brandl, N. Ambrosius, K. Krohnert, H. Maune, and C. Waldschmidt, "RF glass technology is going mainstream: review and future applications,"
IEEE Journal of Microwaves, vol. 3, no. 2, pp. 783–799, 2023.
https://doi.org/10.1109/JMW.2023.3256413
21. H. Kim and S. Nam, "Transmission enhancement methods for low-emissivity glass at 5G mmWave band,"
IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 1, pp. 108–112, 2021.
https://doi.org/10.1109/LAWP.2020.3042524
23. H. Angus Macleod, Thin-Film Optical Filters. New York, NY: American Elsevier, 1969.
24. K. Sarabandi and N. Behdad, "A frequency selective surface with miniaturized elements,"
IEEE Transactions on Antennas and Propagation, vol. 55, no. 5, pp. 1239–1245, 2007.
https://doi.org/10.1109/TAP.2007.895567
25. O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Raisanen, and S. A. Tretyakov, "Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches,"
IEEE Transactions on Antennas and Propagation, vol. 56, no. 6, pp. 1624–1632, 2008.
https://doi.org/10.1109/TAP.2008.923327
26. H. R. Zu, B. Wu, B. Chen, W. H. Li, T. Su, Y. Liu, W. X. Tang, D. P. He, and T. J. Cui, "Optically and radiofrequency-transparent metadevices based on quasi-one-dimensional surface plasmon polariton structures,"
Nature Electronics, vol. 6, no. 7, pp. 525–533, 2023.
https://doi.org/10.1038/s41928-023-00995-z
27. S. M. A. M. H. Abadi and N. Behdad, "Inductively-coupled miniaturized-element frequency selective surfaces with narrowband, high-order bandpass responses,"
IEEE Transactions on Antennas and Propagation, vol. 63, no. 11, pp. 4766–4774, 2015.
https://doi.org/10.1109/TAP.2015.2477850
28. S. Biber, M. Bozzi, O. Gunther, L. Perregrini, and L. P. Schmidt, "Design and testing of frequency-selective surfaces on silicon substrates for submillimeter-wave applications,"
IEEE Transactions on Antennas and Propagation, vol. 54, no. 9, pp. 2638–2645, 2006.
https://doi.org/10.1109/TAP.2006.880663
29. T. D. Nguyen, Y. Lee, and C. W. Jung, "Transparent and flexible patch antenna using MMF for conformal WiFi-6E applications,"
Journal of Electromagnetic Engineering and Science, vol. 23, no. 4, pp. 310–317, 2023.
https://doi.org/10.26866/jees.2023.4.r.172
30. G. W. Chen, S. W. Wong, Y. Li, R. S. Chen, L. Zhang, A. K. Rashid, N. Xie, and L. Zhu, "High roll-off frequency selective surface with quasi-elliptic bandpass response,"
IEEE Transactions on Antennas and Propagation, vol. 69, no. 9, pp. 5740–5749.
https://doi.org/10.1109/TAP.2021.3060148
31. M. Al-Joumayly and N. Behdad, "A new technique for design of low-profile, second-order, bandpass frequency selective surfaces,"
IEEE Transactions on Antennas and Propagation, vol. 57, no. 2, pp. 452–459, 2009.
https://doi.org/10.1109/TAP.2008.2011382