1. D. W. Runton, B. Trabert, J. B. Shealy, and R. Vetury, "History of GaN: high-power RF gallium nitride (GaN) from infancy to manufacturable process and beyond,"
IEEE Microwave Magazine, vol. 14, no. 3, pp. 82–93, 2013.
https://doi.org/10.1109/MMM.2013.2240853
2. H. S. Kwon, G. W. Choi, S. M. Lee, and D. W. Kim, "S-band 300-W GaN HEMT internally matched power amplifier,"
The Journal of Korean Institute of Electromagnetic Engineering and Science, vol. 31, no. 1, pp. 43–50, 2020.
https://doi.org/10.5515/KJKIEES.2020.31.1.43
3. H. S. Kwon, J. H. Jung, and D. W. Kim, "Scalable GaN HEMT large-signal model for 140-W power devices,"
The Journal of Korean Institute of Electromagnetic Engineering and Science, vol. 31, no. 12, pp. 1059–1068, 2020.
https://doi.org/10.5515/KJKIEES.2020.31.12.1059
4. J. P. Mondal, "Distributed scaling approach of MESFETs and its comparison with the lumped-element approach,"
IEEE Transactions on Microwave Theory and Techniques, vol. 37, no. 7, pp. 1085–1090, 1989.
https://doi.org/10.1109/22.24552
5. D. Resca, A. Santarelli, A. Raffo, R. Cignani, G. Vannini, F. Filicori, and D. M. P. Schreurs, "Scalable nonlinear FET model based on a distributed parasitic network description,"
IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 4, pp. 755–766, 2008.
https://doi.org/10.1109/TMTT.2008.918153
6. A. Xiong, C. Charbonniaud, E. Gatard, and S. Dellier, "A scalable and distributed electro-thermal model of Al-GaN/GaN HEMT dedicated to multi-fingers transistors," In:
Proceedings of 2010 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS); Monterey, CA, USA. 2010;pp 1–4.
https://doi.org/10.1109/CSICS.2010.5619692
7. S. Halder, J. McMacken, and J. Gering, "First pass multi-cell modeling strategy for GaN package device," In:
Proceedings of 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS); La Jolla, CA, USA. 2014;pp 1–4.
https://doi.org/10.1109/CSICS.2014.6978555
8. F. Heinz, D. Schwantuschke, A. Leuther, and O. Ambacher, "Highly scalable distributed high electron mobility transistor model," In:
Proceedings of 2019 IEEE Asia-Pacific Microwave Conference (APMC); Singapore. 2019;pp 1286–1288.
https://doi.org/10.1109/APMC46564.2019.9038318
9. G. Torregrosa, J. Grajal, M. Peroni, A. Serino, A. Nanni, and A. Getronio, "Large-signal modeling of power GaN HEMTs including thermal effects," In:
Proceedings of the 2007 European Microwave Integrated Circuits Conference; Munich, Germany. 2007;pp 36–39.
https://doi.org/10.1109/EMICC.2007.4412641
13. A. Darwish, A. J. Bayba, and H. A. Hung, "Channel temperature analysis of GaN HEMTs with nonlinear thermal conductivity,"
IEEE Transactions on Electron Devices, vol. 62, no. 3, pp. 840–846, 2015.
https://doi.org/10.1109/TED.2015.2396035
14. F. Temcamani, J. B. Fonder, O. Latry, and C. Duperrier, "Electrical and physical analysis of thermal degradations of AlGaN/GaN HEMT under radar-type operating life,"
IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 3, pp. 756–766, 2016.
https://doi.org/10.1109/TMTT.2016.2519342
15. Y. Jia, Y. Xu, and Y. Guo, "A universal scalable thermal resistance model for compact large-signal model of Al-GaN/GaN HEMTs,"
IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 10, pp. 4419–4429, 2018.
https://doi.org/10.1109/TMTT.2018.2854185
16. B. Gonzalez, A. Lazaro, and R. Rodriguez, "Gate geometry-dependent thermal impedance of depletion mode HEMTs,"
IEEE Transactions on Electron Devices, vol. 70, no. 10, pp. 5217–5222, 2023.
https://doi.org/10.1109/TED.2023.3305313
17. J. Joh, J. A. Del Alamo, U. Chowdhury, T. M. Chou, H. Q. Tserng, and J. L. Jimenez, "Measurement of channel temperature in GaN high-electron mobility transistors,"
IEEE Transactions on Electron Devices, vol. 56, no. 12, pp. 2895–2901, 2009.
https://doi.org/10.1109/TED.2009.2032614