1. B. A. Munk, Frequency Selective Surfaces: Theory and Design. New York, NY: Wiley, 2000.
2. D. T. Phan, T. K. T. Nguyen, N. H. Nguyen, D. T. Le, X. K. Bui, D. L. Vu, C. L. Truong, and T. Q. H. Nguyen, "Lightweight, ultrawideband, and polarization-insensitive metamaterial absorber using a multilayer dielectric structure for C-and X-band applications,"
Physica Status Solidi (B), vol. 258, no. 10, article no. 2100175, 2021.
https://doi.org/10.1002/pssb.202100175
3. H. H. Chou and G. J. Ke, "Narrow bandpass frequency selective surface with high level of angular stability at Ka-band,"
IEEE Microwave and Wireless Components Letters, vol. 31, no. 4, pp. 361–364, 2021.
https://doi.org/10.1109/LMWC.2021.3054016
4. G. I. Kiani, L. G. Olsson, A. Karlsson, K. P. Esselle, and M. Nilsson, "Cross-dipole bandpass frequency selective surface for energy-saving glass used in buildings,"
IEEE Transactions on Antennas and Propagation, vol. 59, no. 2, pp. 520–525, 2011.
https://doi.org/10.1109/TAP.2010.2096382
5. O. P. Falade, S. F. Jilani, A. Y. Ahmed, T. Wildsmith, P. Reip, K. Z. Rajab, and A. Alomainy, "Design and characterisation of a screen-printed millimetre-wave flexible metasurface using copper ink for communication applications,"
Flexible and Printed Electronics, vol. 3, no. 4, article no. 045005, 2018.
https://doi.org/10.1088/2058-8585/aaf0eb
6. S. F. Jilani, O. P. Falade, T. Wildsmith, P. Reip, and A. Alomainy, "A 60-GHz ultra-thin and flexible metasurface for frequency-selective wireless applications,"
Applied Sciences, vol. 9, no. 5, article no. 945, 2019.
https://doi.org/10.3390/app9050945
7. N. Li, J. Zhao, Y. Xie, D. Wang, and Y. Cheng, "Broadband metasurface bandpass filter with wide angular stability for the Ku-band,"
Optik, vol. 311, article no. 171918, 2024.
https://doi.org/10.1016/j.ijleo.2024.171918
8. D. Wang, L. Yang, B. Cai, L. Wu, Y. Cheng, F. Chen, H. Luo, and X. Li, "Temperature tunable broadband filter based on hybridized vanadium dioxide (VO
2) metasurface,"
Journal of Physics D: Applied Physics, vol. 58, no. 3, article no. 035106, 2025.
https://doi.org/10.1088/1361-6463/ad8895
9. L. Zhu and P. Y. Chen, "A low-RCS and low-ECC transparent meta-radomes based on a conductive nanocomposite," In:
Proceedings of 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI); Singapore. 2021, pp 1859–1860.
https://doi.org/10.1109/APS/URSI47566.2021.9703729
10. N. Liu, X. Sheng, C. Zhang, and D. Guo, "Design of frequency selective surface structure with high angular stability for radome application,"
IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 1, pp. 138–141, 2018.
https://doi.org/10.1109/LAWP.2017.2778078
11. J. Li, G. Hu, L. Shi, N. He, D. Li, Q. Shang, and et al, "Full-color enhanced second harmonic generation using rainbow trapping in ultrathin hyperbolic metamaterials,"
Nature Communications, vol. 12, no. 1, article no. 6425, 2021.
https://doi.org/10.1038/s41467-021-26818-3
12. D. Wang, B. Cai, L. Yang, L. Wu, Y. Cheng, F. Chen, H. Luo, and X. Li, "Transmission/reflection mode switchable ultra-broadband terahertz vanadium dioxide (VO2) metasurface filter for electromagnetic shielding application,"
Surfaces and Interfaces, vol. 49, article no. 104403, 2024.
https://doi.org/10.1016/j.surfin.2024.104403
13. Z. Huang, Y. Zheng, J. Li, Y. Cheng, J. Wang, Z. K. Zhou, and L. Chen, "High-resolution metalens imaging polarimetry,"
Nano Letters, vol. 23, no. 23, pp. 10991–10997, 2023.
https://doi.org/10.1021/acs.nanolett.3c03258
14. G. Liu, M. R. D. Kodnoeih, K. T. Pham, E. M. Cruz, D. Gonzalez-Ovejero, and R. Sauleau, "A millimeter-wave multibeam transparent transmitarray antenna at Ka-band,"
IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 4, pp. 631–635, 2019.
https://doi.org/10.1109/LAWP.2019.2899925
15. M. Deng, S. Kanwal, Z. Wang, C. Cai, Y. Cheng, J. Guan, and et al, "Dielectric metasurfaces for broadband phase-contrast relief-like imaging,"
Nano Letters, vol. 24, no. 46, pp. 14641–14647, 2024.
https://doi.org/10.1021/acs.nanolett.4c03695
16. Z. Lu, Y. Liu, H. Wang, Y. Zhang, and J. Tan, "Optically transparent frequency selective surface based on nested ring metallic mesh,"
Optics Express, vol. 24, no. 23, pp. 26109–26118, 2016.
https://doi.org/10.1364/OE.24.026109
17. H. Chen, H. Chen, X. Xiu, Q. Xue, and W. Che, "Transparent FSS on glass window for signal selection of 5G millimeter-wave communication,"
IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 12, pp. 2319–2323, 2021.
https://doi.org/10.1109/LAWP.2021.3110053
18. M. Mantash, A. Kesavan, and T. A. Denidni, "Highly transparent frequency selective surface based on electrotextiles for on-chip applications,"
IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 11, pp. 2351–2354, 2019.
https://doi.org/10.1109/LAWP.2019.2931364
19. Y. Yang, W. Li, K. N. Salama, and A. Shamim, "Polarization insensitive and transparent frequency selective surface for dual band GSM shielding,"
IEEE Transactions on Antennas and Propagation, vol. 69, no. 5, pp. 2779–2789, 2021.
https://doi.org/10.1109/TAP.2020.3032827
20. D. J. King, K. Hettak, M. R. Chaharmir, and S. Gupta, "Flexible ink-minimized screen-printed frequency selective surfaces with increased optical transparency for 5G electromagnetic interference mitigation,"
IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 13, no. 1, pp. 110–119, 2023.
https://doi.org/10.1109/TCPMT.2023.3235616
21. S. K. Sharma, D. Zhou, A. Luttgen, and C. D. Sarris, "A micro copper mesh-based optically transparent triple-band frequency selective surface,"
IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 1, pp. 202–206, 2019.
https://doi.org/10.1109/LAWP.2018.2886305
22. H. Kim and S. Nam, "Transmission enhancement methods for low-emissivity glass at 5G mmWave band,"
IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 1, pp. 108–112, 2021.
https://doi.org/10.1109/LAWP.2020.3042524
23. D. T. Nguyen, J. N. Lee, J. I. Moon, and C. W. Jung, "Single-layer frequency-selective surface on window glass for 5G indoor communications,"
IEEE Antennas and Wireless Propagation Letters, vol. 23, no. 5, pp. 1558–1562, 2024.
https://doi.org/10.1109/LAWP.2024.3362590
24. J. H. Shin and C. W. Jung, "Analysis of optical and microwave transmission by linewidth variation of metal mesh for FSS in GPTS,"
IEEE Microwave and Wireless Technology Letters, vol. 34, no. 5, pp. 580–582, 2024.
https://doi.org/10.1109/LMWT.2024.3383110
25. K. Payne, K. Xu, and J. H. Choi, "Generalized synthesized technique for the design of thickness customizable high-order bandpass frequency-selective surface,"
IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 11, pp. 4783–4793, 2018.
https://doi.org/10.1109/TMTT.2018.2864569
26. K. Sarabandi and N. Behdad, "A frequency selective surface with miniaturized elements,"
IEEE Transactions on Antennas and Propagation, vol. 55, no. 5, pp. 1239–1245, 2007.
https://doi.org/10.1109/TAP.2007.895567
27. P. D. Tung and C. W. Jung, "Optically transparent wideband dipole and patch external antennas using metal mesh for UHD TV applications,"
IEEE Transactions on Antennas and Propagation, vol. 68, no. 3, pp. 1907–1917, 2020.
https://doi.org/10.1109/TAP.2019.2950077
28. S. H. Kang and C. W. Jung, "Transparent patch antenna using metal mesh,"
IEEE Transactions on Antennas and Propagation, vol. 66, no. 4, pp. 2095–2100, 2018.
https://doi.org/10.1109/TAP.2018.2804622
29. P. D. Tung and C. W. Jung, "High optical visibility and shielding effectiveness metal mesh film for microwave oven application,"
IEEE Transactions on Electromagnetic Compatibility, vol. 62, no. 4, pp. 1076–1081, 2020.
https://doi.org/10.1109/TEMC.2019.2927923
30. M. Al-Joumayly and N. Behdad, "A new technique for design of low-profile, second-order, bandpass frequency selective surfaces,"
IEEE Transactions on Antennas and Propagation, vol. 57, no. 2, pp. 452–459, 2009.
https://doi.org/10.1109/TAP.2008.2011382
31. Y. N. Tsai, S. C. Chin, H. Y. Chen, M. S. Li, Y. S. Chen, Y. L. Wang, T. I. Yang, M. H. Tsai, and I. H. Tseng, "Antireflection layer-sputtered transparent polyimide substrate with reliable adhesion strength to the copper layer,"
ACS Omega, vol. 8, no. 6, pp. 5752–5759, 2023.
https://doi.org/10.1021/acsomega.2c07365
32. B. I. Noh, J. W. Yoon, and S. B. Jung, "Effect of laminating parameters on the adhesion property of flexible copper clad laminate with adhesive layer,"
International Journal of Adhe sion and Adhesives, vol. 30, no. 1, pp. 30–35, 2010.
https://doi.org/10.1016/j.ijadhadh.2009.07.001
33. B. I. Noh, J. W. Yoon, and S. B. Jung, "Fabrication and adhesion strength of Cu/Ni–Cr/polyimide films for flexible printed circuits,"
Microelectronic Engineering, vol. 88, no. 6, pp. 1024–1027, 2011.
https://doi.org/10.1016/j.mee.2011.01.071