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I. INTRODUCTION 

As wireless communications are being developed to embrace 

massive transceiver units for better network performance, high 

peak-to-average power ratio (PAPR) signals are applied to power 

amplifiers (PAs).  

As a result, nonlinearity and memory effects lead to spectral 

expansion and deteriorate the adjacent channel power ratio per-

formance. To solve these problems, digital predistortion (DPD), 

backoff operation, and many linearization techniques have been 

introduced [1–4]. 

In particular, in the case of DPD, its performance varies greatly 

depending on the accuracy of the model. Therefore, accurate 

nonlinear modeling of PAs is a prerequisite. In many cases, the  

Volterra series provides a generalized mathematical model with 

memory [5]. However, to represent an accurate nonlinear model, 

the depth of memory must be deep, which requires a large 

number of parameters. In other words, it can achieve limited 

performance in terms of bandwidth and nonlinear effects. 

Although the Wiener–Hammerstein model has been proposed 

to relieve the problem with fewer parameters than the Volterra 

series, it still requires many variables and has limited perfor-

mance [6, 7]. Therefore, the traditional nonlinear model requires 

a large number of parameters and a long extraction time. To 

supplement these points, a modeling method using an artificial 

neural network (ANN) has been proposed [8]. 

To achieve an accurate model, a growing body of research has 

explored nonlinear modeling based on ANN.  
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Abstract 
 

In this paper, a deep neural network (DNN) model is proposed for the behavioral modeling of nonlinear power amplifiers with supply 

dependency. Although the conventional nonlinear model, such as the Volterra series, has high accuracy, it is not commonly implemented 

because of its complexity. However, with manageable complexity, the multidimensional input parameters of the proposed model ensure 

the modeling of the nonlinear behavior of power amplifiers with supply voltage dependency. The proposed model is trained by multi-tone 

signals on a 10-W power amplifier and validated by comparing the output spectrum and the third-order intermodulation (IMD3) of the 

model versus the measured data. The output spectrum shows less than 0.38 dB of error over a bandwidth of 10 MHz and input power 

from 11 dBm to 17 dBm, and the IMD3 error is less than 0.1 dB over the output power range. 
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However, studies on the modeling of PAs using ANNs mainly 

deal with sophisticated model structures and show only input and 

output power dependency [9, 10]. However, to implement a non-

linear model that is applicable to practical systems, such as enve-

lope tracking, power/voltage dependency must be considered. 

In this paper, based on deep neural network (DNN) architecture, 

we propose an accurate behavioral model of PAs with strong 

nonlinearity with bias dependency and memory effects. The 

performance was verified by comparing the third-order inter-

modulation (IMD3) and spectral responses of the measurement 

and model output. 

II. DNN MODELING 

Fig. 1 is a simplified diagram of the modeling system.  

The PA system assumes a low pass (Fig. 2). To consider the 

memory effect of PAs that causes the asymmetry of IMD, a 

memory polynomial is required. As the system includes delay 

tabs for a long-term memory effect, it has a structure similar to 

that of a finite-impulse-response (FIR) filter. In Fig. 2, 𝑥ሺ𝑛ሻ 

and 𝑦ሺ𝑛ሻ are defined as the input and output signals that 

measure the PA system, respectively. 𝑦ොሺ𝑛ሻ represents the out-

put of the desired model. 𝑥ሺ𝑛ሻ and 𝑦ሺ𝑛ሻ can be written in (1) 

as follows: 
 𝑦ሺ𝑛ሻ ൌ 𝑓൫𝑥ሺ𝑛ሻ, 𝑦ሺ𝑛 െ 1ሻ, ⋯ , 𝑦ሺ𝑛 െ 𝑄ሻ൯, (1)
 

where 𝑓ሺ∙ሻ is the nonlinearity of PA, and 𝑄 is the memory 

depth [9].  𝑒ሺ𝑛ሻ is a cost function, a difference between the actual values 𝑦ሺ𝑛ሻ and 𝑦ොሺ𝑛ሻ. 𝑦ሺ𝑛ሻ is a complex signal and is expressed as 

(2). 𝑒ሺ𝑛ሻ is defined as shown in Eq. (3) [11]. 
 𝑦ሺ𝑛ሻ ൌ 𝑦௖ሺ𝑛ሻ𝑒௝ଶగ௙೎௧, (2)𝑒ሺ𝑛ሻ ൌ ଵ௡ ∑ |𝑦௖ෝ ሺ𝑛ሻ െ 𝑦௖ሺ𝑛ሻ|ଶ௡௜ୀଵ , (3)
 

where 𝑛 is the number of total data. 

A basic modeling system was used to minimize 𝑒ሺ𝑛ሻ to find 𝑦ොሺ𝑛ሻ most similar to 𝑦ሺ𝑛ሻ. In this case, the DNN structure 

was selected as an algorithm for determining 𝑦ሺ𝑛ሻ. 

To optimize 𝑦ොሺ𝑛ሻ, the optimal gradient was determined by 

the stochastic gradient descent method, which is defined in (4) 

as follows: 
 𝜔௧ାଵ ൌ  𝜔௧ െ 𝛼 డ௙డఠ೟. (4)
 

The method does not utilize all data but rather relies on a 

uniform, randomly chosen example from the data to calculate 

the predicted slope for each step. This method can obtain the 

optimal gradient faster than gradient descent. 

However, the vanishing gradient problem occurs as the depth 

of the model increases. Backpropagation is the process that 

calculates a target value and an output of the prediction model 

in the forward direction and then propagates the error to update 

the weight of each node, as shown in (5) and (6). This can 

resolve the vanishing gradient problem. 
 𝛿௝ሺ௟ሻ ≡ డ௅௢௦௦డௌೕሺ೗ሻ ൌ ൫𝛿ሺ௟ାଵሻ൯்𝜔௝ሺ௟ାଵሻ డ௫ೕሺ೗శభሻడௌೕሺ೗ሻ , 

(5)డ௅௢௦௦డఠ೔ೕሺ೗ሻ ൌ 𝛿௝ሺ௟ሻ𝑥௜ሺ௟ሻ
. 

(6)
 

S is a function expressing the node, ω is the weight of each node, 

and x is the input data. 

The local gradient of each node obtained in the forward pro-

gression is used to calculate the differential value to be obtained 

in the backward progression. By using the stored global gradient, 

it is possible to obtain the partial differential loss value with 

respect to x. 

For the structure of the model, a fully connected two hidden 

layers artificial neural network (FC2HLANN) is adopted [9], as 

shown in Fig. 2. The corresponding structure works in such a 

way that the previous sample 𝑦ሺ𝑛ሻ of the output signal is 

supplied back to the input layer through the buffer. Here, Q 

denotes the number of neurons in the layer representing the 

memory depth attributed to the output signal. The long short-

term memory (LSTM) structure is chosen to contain the non-

linearity of the PA. The LSTM is a model that can perform 

cyclic structures for a long time. It has strengths in sequential 

and iterative data learning. Unlike DNNs, which send an input 

 
Fig. 1. Block diagram of the modeling system. 

 

 
Fig. 2. A fully connected two hidden layers artificial neural network 

(FC2HLANN)-based model structure. 
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through an activation function in the hidden layer to output, 

LSTMs have characteristics in which a previous output is passed 

as an input to the computation of a node next to the hidden 

layer. Using this circular structure, past learning is reflected in 

present learning through ω. This algorithm resolves the existing 

limitations of continuous, iterative, and sequential learning data. 

The number of neurons in the hidden layer is determined as 

Q + 1. If the number of neurons in the hidden layer is insuffi-

cient, the accuracy of modeling by DNN is underestimated. 

Conversely, as the number of neurons increases, noise may be 

included, or overfitting may occur. In other words, it is not 

always true that performance improves when the memory depth 

increases and the number of neurons increases. In this paper, a 

structure with four neurons is used: Q = 4 [9]. 

As the existing DNN structure depends on the relationship 

between the input and output signals of the device under test 

(DUT), two hidden layers are used to achieve strong nonlinearity 

while maintaining a correlation between the input and the output. 

The linear layer is used to approximate the feedback FIR filter. 

The second layer is used for the static nonlinearity approximation 

of the transistor, and the number of neurons is determined by 

the static nonlinearity of the PA. A hyperbolic tangent is used 

to express this, as shown in (7). 
 tanh ൌ  ሺ௘ೣି௘షೣሻሺ௘ೣା௘షೣሻ. (7)

 

To represent the model dependency on supply voltage, a 

multidimensional modeling structure was adopted. Fig. 3 shows 

the model structure used for multi-dimensional modeling. In 

this paper, drain voltage and input power are given as additional 

inputs for multi-dimensional modeling. 

In Fig. 3, 𝑧ሺ𝑛ሻ represents the normalized drain voltage 

between -1 and 1. The input power is implemented as an 

additional dimension. In the existing input type, a length equal to 

the input level is added.  

As the dimension increases, the third nonlinear layer is added 

to increase learning accuracy. 

 

 

Fig. 3. Multi-input model structure. 

III. MEASUREMENT 

To represent the high PAPR of the latest communication 

signals, a phase-distributed 4-tone was used, with a center 

frequency of 3.5 GHz and a bandwidth of 4.5 MHz. The enve-

lope of the signal was digitized. The data sampling frequency 

was 10 GSa/s, and training was performed using 300,000 samples 

in one dataset. The test set comprised 100,000 data. Fig. 4 shows 

the measurement setup. A multi-tone signal was generated with 

an input level of -10 dBm by a Universal Software Radio 

Peripheral. The signal was fed into a 10-W GaN PA from Cree 

with a 17-dB gain. Afterward, the input and output were 

digitized using a high-speed oscilloscope. 

IV. MODELING RESULTS 

Fig. 5(a) shows the nonlinearity of the DNN model and the 

PA. Strong nonlinearity is observed from the model and the PA 

 
Fig. 4. Measurement setup. 

 

 
(a) (b) 

 

(c) (d) 

Fig. 5. Modeling with 4-tone and 28 V supply voltage: (a) normalized 

measured and DNN model AM/AM, (b) time domain 

waveforms of the input, PA output, and the model output, 

(c) IMD asymmetry of the of model and the measured out-

put, and (d) normalized measured and DNN model 

AM/PM distortion.
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output, confirming that the model successfully represents the 

nonlinearity of the PA. In Fig. 5(b), the measured PA and 

DNN model outputs are compared, showing that the model 

accurately follows the PA output. Fig. 5(c) is the fast-Fourier- 

transform (FFT) result presented to confirm the memory effect 

of the PA through the asymmetry of IMD3. This confirms that 

asymmetry exists between the right and left of IMD3, which are 

-32.15 dBc and -31.55 dBc, respectively. Fig. 5(d) shows the 

normalized amplitude modulation/phase modulation (AM/PM). 

Fig. 5 clearly shows that the DNN model successfully models 

the memory effect in the PA.  
Fig. 6(a) shows the normalized measured and DNN model 

AM/AM with a drain voltage of 28, 27, and 26 V. Fig. 6(b) 

depicts the multidimensional multi-tone measured and DNN 

model AM/PM distortion. Fig. 6(a) and 6(b) show the results 

at the fundamental carrier frequency. Baseband modeling is 

performed after down-conversion, as shown in Fig. 6(d). The 

sampling frequency was 150 MSa/s. Training was performed 

using 8,192 samples in one dataset, and the test set comprised 

8,192 data. Fig. 6(c) and 6(d) show the training performance of 

the model with drain voltage. Fig. 6(c) and 6(d) show the 

memory effect, while Fig. 6(c) shows the measurement output 

and the model output with a multi-dimensional multi-tone 

signal. 

V. CONCLUSION 

In this paper, a multi-dimensional deep learning model of 

nonlinear PAs with memory effect bias dependency is proposed. 

The model was trained by multi-tone waveforms into a 40-dBm 

GaN PA. The modeling confirmed that nonlinearity was accu-

rately modeled and that the IMD3 result showed a memory 

effect within a 0.1-dB error over the entire output power range. 

Moreover, the proposed multi-dimensional model was verified 

to show the dynamic nonlinear behavior of the PA with respect 

to the drain voltage variation. Thus, we successfully implemented 

an efficient nonlinear PA model with memory effects using a 

deep learning model with optimized hyperparameters. 
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