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I. INTRODUCTION 

Wireless power transfer (WPT) is becoming a popular tech-

nique for diverse applications, including consumer electronic 

products, unmanned aerial vehicles, and implantable medical 

devices [1–3]. Omnidirectional charging is critical for improving 

system compatibility. In [4], a coupler with multiple coils nested 

in each other achieves stable transmission efficiency with any 

angular and lateral misalignment. In [5], a crossed dipole coupler 

with a rotating magnetic field achieves charging at any position 

in the same plane. In [6], a cube dipole transmitter (Tx) is used 

to charge multiple receivers (Rx). In [7], a cubic Tx in an opti-

mized structure reduces costs and achieves stable transmission 

efficiency. In [8], a double 3D coil Tx improves the system's 

anti-offset ability. In [9], by adding a three-orthogonal-plane 

core to a Tx, the magnetic field distribution becomes uniform 

without increasing the Tx size or system complexity. In [10], a 

bowl-shaped Tx provides both spatial freedom and high effi-

ciency, offering a promising charging solution for mobile devices. 

In [11], a dual-band omnidirectional 3D Tx can simultaneously 

offer specific advantages for the requirements of different fre-

quencies, distances, and power. In [12], transmission perfor-

mance increases with a dihedral coil angle of 80°–85°. In [13], an 

original double toroidal helix-coil Tx is a high-efficiency omni-

directional coupler that maintains transmission efficiency above 

90% in almost the entire range of Rx positions at a transfer dis-

tance of 200 mm. Changing the structure of the Tx can make 

the magnetic field more uniform, while changing the structure  
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Abstract 
 

Achieving stable power transfer by merely relying on quasi-omnidirectional couplers is challenging. In this paper, we propose a quasi-

omnidirectional wireless power transfer (QWPT) system with a novel curved-coil transmitter to achieve steady transmission performance. 

A single power source is used to drive the transmitter's current without using a phase and current control methodology. Power is transmit-

ted to the receiver through magnetic resonant coupling at a distance of 50 mm. Moreover, an equivalent circuit model of the curved-coil 

system is derived and mathematically analyzed. The mutual inductance of the proposed QWPT system is evaluated through analysis and 

experiments. The experimental results for the resonant coupling system confirm the theoretical analysis of the performance of the curved-
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of the Rx also enhances the coupling coefficient. In [14], a 

quadrature-shaped Rx realizes an angular misalignment-

insensitive omnidirectional WPT system. 

Algorithm makes the Tx generate a uniform rotating magnetic 

field [15,16]. The position of the Rx needs to be calculated 

[17,18] to increase transmission efficiency [19]. In [20], a uniform 

magnetic field is formed by rotating the Tx. In [21], a butterfly-

shaped Tx significantly improves system efficiency when Rx 

rotates. In [22], a cubic magnetic coupler obtains a higher cou-

pling coefficient and has high misalignment tolerance. In [23], a 

spatial rotating DD coil is proposed to solve the power fluctuation 

problem of dynamic WPT systems at medium and long trans-

mission distances. 

When the structure of the Tx changes, the magnetic field 

changes accordingly. Therefore, this work explores a curved cir-

cular coil and analyzes the changes in the transmission perfor-

mance of coils with curved angles ranging from 90° to 180°. The 

160° and 90° coils show the best transmission performance. Thus, 

two kinds of quasi-omnidirectional transmitters are fabricated. 

The 160° curved-coil Tx shows good transmission performance, 

while the 90° Tx shows stable transmission performance. 

The rest of this paper is organized as follows. The equivalent 

circuit analysis is presented in Section II, which describes the 

mutual inductance variations in the curved coil region. The pro-

posed curved coils are introduced with a design example in Sec-

tion III. The experimental verification of the proposed concept 

is presented in Section IV. Section V presents the conclusions. 

II. THEORETICAL ANALYSIS 

A WPT coupler is composed of Tx coils, relay coils, and Rx coils, 

and the number of coils can be adjusted according to different 

needs. By adjusting the number and shape of the coils, different 

electromagnetic fields can be generated. The equivalent circuit 

of the WPT system is shown in Fig. 1. 
The Tx, relay, and Rx coils are tuned to a working frequency 𝜔  using capacitors in a series. The Tx coils are connected to 

full-bridge converters (high-frequency sources), as illustrated in 

Fig. 1. The coupled mode theory model of the proposed WPT 

system can be expressed as in [24]: 

 𝑎𝑎⋮𝑎
𝑗𝜔 𝜏 𝑗𝐾 𝑗𝐾 ⋯ 𝑗𝐾𝑗𝐾 𝑗𝜔 𝜏 𝑗𝐾 ⋯ 𝑗𝐾⋮ ⋮ ⋱ ⋮ ⋮𝑗𝐾 𝑗𝐾 ⋯ ⋯ 𝑗𝜔 𝜏

𝑎𝑎⋮𝑎
𝐹𝐹⋮𝐹 ,

(1)
 

where 𝑎 𝐴 𝑒  denotes the energy modes of the trans-

mitting and receiving circuits, 𝜔  denotes the coil's intrinsic 

frequency, 𝜏  denotes the coil's loss, 𝐾  = 𝐾  (i = j:1, 2, …, n) 

denotes the coupling coefficient between the coils, and 𝐹  de-

notes the DC power supply. 

By transforming Eq. (1), the power inside the Tx, relay, and 

Rx coils can be expressed as 
 

⎩⎪⎨
⎪⎧ 𝑎 ⋯𝑎 ⋯⋮𝑎 ⋯ . 

(2)
 

Each coil's power is proportional to 𝐾  and inversely pro-

portional to the coil's loss and intrinsic frequency, so the resonant 

system reduces the loss. When the coils' position change, 𝐾  

also changes, causing fluctuations in transmission performance. 

When the Tx coils are perpendicular, they contain only supply 

power and coupled power. Therefore, they should be kept near-

ly perpendicular to reduce coupling effects. Relay coils, which 

have only coupled power, can increase the transmission range. 

By optimizing their structure, transmission performance can 

increase. The Rx coils have only coupled power. Transmission 

performance stability is achieved when the power load is con-

stant. When an Rx coil changes positions, 𝐾  should remain 

the same to maintain a constant power load. Thus, to achieve 

transfer performance stability, 𝐾  should remain constant. 

The coupling coefficient is expressed as 
 𝐾 , (3)
 

where 𝐿  denotes the coil's inductance, and M denotes the 

coupler's mutual inductance. Eq. (3) indicates that transmission 

performance is stable when M is constant. M is related to the 

coupler's physical structure and spatial position. The coils are 

coupled. To reduce the calculations and analysis, we introduce 

magnetic induction as 
 𝑀 , (4)
 

where I denotes the coil's current, and 𝑁  denotes the turns of 

the Rx. Eq. (4) indicates that M remains stable when the mag-

netic induction (B) density distribution of the Tx is uniform. B 

is calculated as 
 𝐵 IN ∮ ∧

, (5)

 

where I denotes the coil's current, 𝑑𝑙 denotes the line element 
 

Fig. 1. Equivalent circuit of the WPT system. 
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along the wire, 𝑟∧ ∧ ∧ ∧
 denotes wire 

point to space point of the vector, and r denotes the distance 

between the source points and space points, which is (𝑥 ,𝑦 , 𝑧 ). We substitute Eq. (5) with Eq. (4) as 
 𝑀 ∼

4π
∮ ∧

, (6)
 

where 𝑆 denotes the area of the Rx. When the Rx moves, the 

total B shows little change in the Rx area, so the transmission 

performance is stable. Eq. (6) can be divided into three compo-

nents: 
 𝑀 ∼

4π
𝑑𝑦 𝑑𝑧 , 𝑀 ∼

4π
𝑑𝑧 𝑑𝑥 , 𝑀 ∼

4π
𝑑𝑥 𝑑𝑦 , (7)

 

where 𝑥 , 𝑦 , and 𝑧  denote the range of the wire's position 

change. The three components of Eq. (7) allow us to clearly 

observe changes in the magnetic field within a certain area. The 

quasi-omnidirectional Tx consists of multiple curved coils. The 

coordinates of the points on the Tx coil-x, coil-y, and coil-z can 

be expressed as 
   

Coil-x：
𝑥 0𝑦 𝑅 𝑐𝑜𝑠 𝛿𝑧 𝑅 𝑠𝑖𝑛 𝛿 , 𝛿 ∈ 0, 𝜋 , 

Coil-y：
𝑥 𝑅 𝑠𝑖𝑛 𝜍𝑦 0𝑧 𝑅 𝑐𝑜𝑠 𝜍 , 𝜍 ∈ 0, 𝜋 , 

Coil-z：
𝑥 𝑅 𝑐𝑜𝑠 𝜓𝑦 𝑅 𝑠𝑖𝑛 𝜓𝑧 0 , 𝜓 ∈ 0, 𝜋 , 

(8)
 

where R denotes the radius of each Tx coil, and α, β, and γ 

denote the angular misalignment in the QWPT system rotating 

around the x-axis, y-axis, and z-axis, respectively. The matrix 

rotation along the x-axis, y-axis, and z-axis can be expressed as 
 𝑅 1 0 00 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛼0 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼 , 

𝑅 𝑐𝑜𝑠 𝛽 0 𝑠𝑖𝑛 𝛽0 1 0𝑠𝑖𝑛 𝛽 0 𝑐𝑜𝑠 𝛽 , 

𝑅 𝑐𝑜𝑠 𝛾 𝑠𝑖𝑛 𝛾 0𝑠𝑖𝑛 𝛾 𝑐𝑜𝑠 𝛾 00 0 1 . 
(9)

 

Taking the rotation of coil-x around the z-axis as an example, 
 

Coil-𝑥∼： 𝑥 𝑅 𝑐𝑜𝑠 𝛿 𝑠𝑖𝑛 𝛾𝑦 𝑅 𝑐𝑜𝑠 𝛿 𝑐𝑜𝑠 𝛾𝑧 𝑅 𝑠𝑖𝑛 𝛿 , 𝛿 ∈ 0, 𝜋 , (10)

 

we substitute Eq. (10) with Eq. (8): 
 

𝑀∼ 𝜇 𝑁 𝑁 𝑆∼
4π

𝑦 -R 𝑐𝑜𝑠 𝛿 𝑐𝑜𝑠 𝛾 𝑅 𝑠𝑖𝑛 𝛿 𝑠𝑖𝑛 𝛾 𝑥 +Rcos𝛿 𝑠𝑖𝑛 𝛾 𝑅 𝑠𝑖𝑛 𝛿 𝑐𝑜𝑠 𝛾𝑥 𝑅 𝑐𝑜𝑠 𝛿 𝑠𝑖𝑛 𝛾 𝑦 -R 𝑐𝑜𝑠 𝛿 𝑐𝑜𝑠 𝛾 𝑧 -R 𝑠𝑖𝑛 𝛿 𝑑𝛿  

𝑀∼ 𝜇 𝑁 𝑁 𝑆∼
4π

𝑥 𝑅 𝑐𝑜𝑠 𝛿 𝑠𝑖𝑛 𝛾 𝑅 𝑐𝑜𝑠 𝛿 𝑧 𝑅 𝑠𝑖𝑛 𝛿 𝑅 𝑠𝑖𝑛 𝛿 𝑠𝑖𝑛 𝛾𝑥 𝑅 𝑐𝑜𝑠 𝛿 𝑠𝑖𝑛 𝛾 𝑦 -R 𝑐𝑜𝑠 𝛿 𝑐𝑜𝑠 𝛾 𝑧 -R 𝑠𝑖𝑛 𝛿 𝑑𝛿 , 
𝑀∼ 𝜇 𝑁 𝑁 𝑆∼

4π

𝑦 -R 𝑐𝑜𝑠 𝛿 𝑐𝑜𝑠 𝛾 𝑅 𝑠𝑖𝑛 𝛿 𝑠𝑖𝑛 𝛾 𝑥 +Rcos𝛿 𝑠𝑖𝑛 𝛾 𝑅 𝑠𝑖𝑛 𝛿 𝑐𝑜𝑠 𝛾𝑥 𝑅 𝑐𝑜𝑠 𝛿 𝑠𝑖𝑛 𝛾 𝑦 -R 𝑐𝑜𝑠 𝛿 𝑐𝑜𝑠 𝛾 𝑧 -R 𝑠𝑖𝑛 𝛿 𝑑𝛿 . 
(11) 

 

We have established the mathematical model of the QWPT 

system, which can guarantee transmission performance stability 

as long as the average B is constant. To find the optimal combi-

nation, we simulate and analyze the combinations of different 

numbers of curved coils. 

III. THE PROPOSED WPT TX 

Although increasing the number of Tx coils can make B more 

uniform, many coils degrade transmission performance. We 

need to analyze the magnetic field distribution of coils with 

different curved angles and determine the arrangement and 

number of coils according to the characteristics of the magnetic 

field. The coil's curved angles range from 90° to 180°. An angle 

cannot be less than 90° because the current's direction is oppo-

site within 90°, which will reduce the absolute value of B. As 

shown in Fig. 2, the coil angle changes from 180° to 90° by 10° 

each time. 

The curved coil divides space into two parts: a wide-angle ar-

ea (WAA) and a narrow-angle area (NAA). When the central 

point of the Rx is around θ = 90° and φ = 0°–360° (θ move-

ment), the B value of the NAA increases, so the mutual induct-

ance increases. The opposite occurs in the WAA. When the 

central point of the Rx is around θ = 0°–360° and φ = 90° (φ 

movement), the curved coils are equally spaced. As the curved 

angle narrows, the mutual inductance increases in the front of 

the curved coil (FCC) and decreases in the reverse of the curved 

 
Fig. 2. Different areas of a curved coil. 
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coil (RCC). Therefore, we need to analyze the B value in both 

directions. 

As shown in Fig. 3(a), the variation of B indicates that the 

transmission performance of the 90° curved coil is better than 

that of the other coils. The variation of the WAA's B is smaller 

than that of the NAA. Therefore, the WAA can be used only 

to enhance transmission performance. However, the 90° curved 

coil also covers the smallest area, so good transmission perfor-

mance is achieved in a limited area.  

As shown in Fig. 3(b), the φ movement divides the space in-

to two equal parts, and the B value of the FCC is greater than 

that of the RCC. This change is consistent with the 180° coil in 

the Tx design, but the transmission performance of the FCC is 

enhanced. 

We can conclude the following: 

• The curved coil can enhance the transmission performance 

of the front area. 

• As the curved angle widens, the area of high transmission 

performance shrinks. 

• The φ movement divides the space evenly, but the θ 

movement does not. 

To design the quasi-omnidirectional Tx, we verify the above 

conclusions by conducting experiments on the curved coils. 

The power and efficiency trends shown in Fig. 4 are similar 

to those shown in Fig. 3(a). In the NAA, narrower curved 

angles have better transmission performance. The transmission 

performance of the 180° coil is significantly weaker than that of 

the other coils, and the coverage area of the 90° coil is the 

smallest. In the WAA, the 160° coil shows the best transmis-

sion performance and the largest coverage area. Therefore, the 

160° coil is the optimal coil for the θ movement. 

The power and efficiency trends shown in Fig. 5 are similar 

to those shown in Fig. 3(b). The space is divided into two equal 

parts. The transmission performance of the FCC is better than 

that of the RCC. In the FCC, the 90° coil has better transmis-

sion performance, whereas in the RCC, the 180° coil has better 

performance. Their coverage areas are basically the same. We 

can conclude that the 90° coil is the optimal coil for the φ 

movement. 
In summary, the 160° coil is the optimal coil for the θ move-

ment, and the 90° coil is the optimal coil for the φ movement. 

Therefore, we design two curved-coil Txs, CTx1 and CTx2, as 

 
(a) 

 
(b) 

Fig. 3. Variation of B for two orbiting motions: (a) θ movement 

and (b) φ movement. 

 
(a) 

 
(b) 

Fig. 4. Transmission performance of the θ movement: (a) trans-

mission power and (b) efficiency. 
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shown in Fig. 6. CTx1 is composed of four 90° coils. Two op-

posite coils form a pair, and the current of the opposite coils is 

reversed, canceling out the magnetic field. The magnetic field of 

the 90° coil is small in the RCC, so its influence is reduced. 

Two pair are perpendicular to each other, as shown in Fig. 6(a). 

CTx2 is composed of four 160° coils. To expand the effective 

charging area and reduce the angle of the same current, the coils 

are combined irregularly. In each pair, one side of one coil over-

laps with one side of the other. Moreover, one side of one pair 

overlap with one side of the other, as shown in Fig. 6(b). 

IV. EXPERIMENTAL VERIFICATION 

Based on the principles of the curved-coil Tx presented above, 

we evaluate quasi-omnidirectional Tx prototypes. The radius of 

the coils is set to 50 mm, while the radius of the copper wire is 2 

mm. The current on each side of the curved coil is supplied by a 

single source and generates a magnetic field surrounding the 

resonant loop. Fig. 7 shows the top view of the magnetic field of 

the curved-coil Tx. The B distribution of CTx1 is sparse but 

relatively uniform, whereas that of CTx2 is denser but has two 

 
(a) 

 
(b) 

Fig. 6. Quasi-omnidirectional couplers in a 3D view: (a) CTx1 and 

(b) CTx2. Arrows of the same color represent the current 

direction of the same coil. 

 

 
(a) 

  
(b) 

Fig. 7. Magnetic field distributions of (a) CTx1 and (b) CTx2. 

 
(a) 

 
(b) 

Fig. 5. Transmission performance of the φ movement: (a) trans-

mission power and (b) efficiency. 
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sparse areas. CTx2 has better transmission performance than 

CTx1, but it also has a dead zone. The reason for this is that the 

direction of the rotating magnetic field is parallel to the Rx at 

the dihedral angle of the same current. The transmission per-

formance of CTx1 is relatively stable. The simulated distribu-

tions of the magnetic field vectors generated by the Tx coils 

agree well with the theoretical analysis presented above. 

Fig. 8 shows the experimental equipment used to verify the 

proposed QWPT system. The CTxs are shown in Fig. 8(a)–

8(c). The coils' parameters are shown in Table 1. The CTxs are 

made from a Litz wire. As shown in Fig. 8(d), the CTxs are 

placed in the xoy plane. All coils are tuned to the design fre-

quency using NPO capacitors. The experimental frequency is 

set to 100 kHz, which is slightly different from the design fre-

quency due to the use of a compensation capacitor. For the power 

source, a full-bridge inverter is built using four MOSFETs 

(IRLL024NPbF). The load resistance is connected to the Rx 

coil. The input voltage (Vin) is 5 V, and the load is 1 Ω. The 

input current (Iin), VRMS, and IRMS of the load are recorded 

at 10° intervals to calculate the transmission power and efficien-

cy, as shown in Fig. 9. The Rx is manually rotated counter-

clockwise around the origin of coordinate in the xoy plane from 

θ = 0° to θ = 360° on coordinate paper, with the distance between 

the Rx and the center fixed at 50 mm. 

The experimental transmission performance results are shown 

in Fig. 10. Efficiency is measured from the DC power sources 

to the AC load. 

 

 
Fig. 9. Sketch map of the experimental measurement. 

 

 
Fig. 10. Transmission performance of the three CTxs. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 8. Experimental equipment: (a) CTx1, (b) CTx2, (c) CTx1s, 

and (d) experimental platform. 

Table 1. Coil parameters

Parameter Value

Rx coil inductance 8.1 μH

Rx coil compensation capacitor 311 μF

CTx1 inductance 27.3 μH

CTx1 compensation capacitor 92.8 μF

CTx2 inductance 64.3 μH

CTx2 compensation capacitor 40 μF

CTx1s inductance 33.9 μH

CTx1s compensation capacitor 74.8 μF
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The transmission performance of CTx1 is basically stable at 

0°–360°, but its average efficiency is 27%. The reason for its 

inefficiency is that the magnetic inductions of opposite coils 

cancel each other out. CTx1 does not have the same current 

direction, so dead zones are avoided. To reduce the influence of 

the opposite coils, we add a magnetic shielding material to 

CTx1, obtaining CTx1s, which has significantly improved 

transmission performance. Because the bent magnetic shielding 

material will shark, we cannot cover all the spheres, but we 

demonstrate that adding a magnetic shielding material can im-

prove transmission performance. 

CTx2 has stable transmission performance at 30°–60° and 

150°–330°, but it also has two dead zones at 0° and 120° because 

the magnetic field is parallel to the Rx at the dihedral angle of 

the same current, and the magnetic inductions of the other coils 

do not fill the two points. Adjusting the combination of the 160° 

coils will increase the number or size of dead zones. Due to the 

existence of dead zones, the magnetic field of CTx2 is not uni-

form. The dead zones are located between two Tx coils with the 

same current direction. The adjacent coils with the same current 

direction cause the B of Tx to be parallel to the Rx, so the system 

cannot transmit power.  

A comparison between the proposed QWPT systems and 

previously proposed structures is presented in Table 2. Previously 

proposed structures are based on orthogonal coils that require 

complex control methods and multiple sources [25–27]. On the 

other hand, the CTxs presented in this article offer a completely 

2D omnidirectional WPT system with a single source. 

V. CONCLUSION 

This paper presents a new quasi-omnidirectional Tx based on 

curved coils. An equivalent circuit is derived, and a mathemati-

cal analysis is performed to specify the resonant coupling opera-

tion. The 160° coil is the optimal coil for the θ movement, 

while the 90° coil is the optimal coil for the φ movement. CTx2 

has an average efficiency of 63% with 4.45 W at 30°–60° and 

150°–330°, but it also has two dead zones. CTx1 can deliver 

power of 4.41 W to the Rx coil arranged around it with an effi-

ciency of approximately 27% at an operating frequency of 100 

kHz and an optimal separation of 50 mm. By adding a magnetic 

shielding material, the efficiency can rise to 32%. Low-cost fabri-

cation without using a current control methodology was imple-

mented to verify the practical design of the quasi-omnidirectional 

curved-coil Tx with a single Rx.  

CTx1 does not have a dead zone but has relatively low effi-

ciency, the efficiency of the QWPT system can be increased by 

placing metamaterial slabs around the CTx1 coil. The FCC of 

the curved coil can enhance transmission performance, so it can 

be used in other charging fields. 
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