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I. INTRODUCTION

Trapped ion technology has become one of the most exciting 

fields recent years as it results in a number of cutting-edge 

research areas and technologies, for example, fundamental physics 

experiments to investigate atomic or molecular properties [1, 2], 

chemical mass analyzer mass spectrometry to determine, with 

high precision, the molecular weights of complex compounds 

[3–5], and a building block of isolated ion to serve as a qubit in 

trapped ion quantum computer technology [6–9]. These inventions 

and technologies introduce a number of emerging industrial 

sectors that accelerate and deliver enormous impacts on commu-

nities worldwide. 

Samuel Earnshaw first investigated the stability issue to control 

a charged particle in free space in an electrostatic field [10]. His 

study has laid the foundation and paved the direction for current 

ion trap techniques. So far, there have been two most common 

types, namely Paul trap and Penning trap techniques. The former 

technique [11–13] was first introduced by Paul [14]; it employs 

dynamic electric fields to trap a charged particle by creating an 

average confining force in all three directions that change over 

time. The latter technique [15, 16] was proposed by Han Georg 

Dehmelt, inspired by Penning’s vacuum gauge invention. It is 

noteworthy that this specific schematic differs from the Paul 

trap technique by adopting an electrostatic field, instead of a 

time-varying electric field, accompanied by a uniform magnetic 

field to confine an ion particle.  

Despite some researches dedicated to studying several appli-

cations employing Paul and Penning trap techniques [17–20], 

the works that have investigated, in rigorous detail, the possibility 

to confine an ion particle in a non-uniform electrostatic field 

remain limited. Still skeptical, we believe that there should be a 
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prospect to confine an ion particle in free space using an electro-

static field [21, 22], but its spatial distribution should be under 

non-uniform conditions. Therefore, in this study, our objective is 

to attempt to prove and affirm that idea through in silico investiga-

tion, based on the developed mathematical model of the equation 

of motion of an ion particle in a non-uniform electrostatic field 

induced by two ionic rings with a common centerline. A one-

dimensional model is employed in this work to conveniently 

obtain and readily verify our proposition. To develop the equation 

of motion, we first establish the electrostatic field model generated 

by each ring using the multipole-expansion technique under the 

azimuthally symmetrical charge distribution assumption [23–

25], rather than using a boundary condition approach found in 

Jackson’s study [26]. Then, we apply the superposition principle 

to determine the total electrostatic field generated by both rings, 

and the equation of motion is finally obtained based on the 

Lagrangian mechanics’ framework [27, 28]. It is important to 

note that the total electrostatic field is expressed in the quad-

ratic potential function, of which Legendre polynomials [29] in 

the series expansion are addressed up to order n = 2, where the 

higher-order terms after n = 3 are truncated due to the small 

amplitude of oscillation assumption. 

II. ELECTROSTATIC THEORY 

1. Method for an Electrostatic Potential Function 

To find an electrostatic potential function generated by an az-

imuthally symmetrical charge distribution in a free region, as 

shown in Fig. 1(a), the multipole expansion method [23–25] is 

employed to determine the form of electrostatic. We recall the 

potential charge distribution in integral form as Eq. (1): 
 

          𝜑(𝑟, 𝜃) = ( , )‖ ‖ 𝑑𝑉 , (1)
 

where 𝜑(𝑟, 𝜃) denotes the electrostatic potential function cre-

ated by the volumetric charge density distribution function 

𝜌(𝑟 , 𝜃 ), 𝑟 and 𝜃 respectively signify a radial distance and an 

inclination angle in the polar spherical coordinate at the location 

under consideration, while 𝑟  and 𝜃 , respectively represent a 

radial distance and an inclination angle in the polar spherical 

coordinate (pointing to the location of a charge distribution), 

and 𝑑𝑣  denotes the infinitesimal volumetric body of a charge 

distribution. To express 1/||𝑟-𝑟 || in the algebraic form to 

facilitate the upcoming derivation process the definition of the 

vector norm is employed. 
 

   ‖ ‖ = √ ∙ . (2)
 

Next, we specify that 𝑟 > represents the maximum magni-

tude between ‖𝑟‖ and ‖𝑟 ‖, whereas 𝑟 < denotes the mini-

mum magnitude between these two variables, namely 𝑟 > = 𝑚𝑎𝑥 (‖𝑟‖,‖𝑟 ‖) and 𝑟 < = 𝑚𝑖𝑛 (‖𝑟‖,‖𝑟 ‖). Therefore, Eq. 

(2) can be rewritten, as shown in Eq. (3):  
 

     ‖ ‖ = ( / ) ( ∙ )/( ) . (3)
 

Obviously, 𝑟 < is less than 𝑟 >; in other words, 𝑟 <  𝑟 >⁄  

is literally less than unity; 𝑟 < 𝑟 > < 1 , which leads to (r <  𝑟 >⁄ ) − 2(𝑟. 𝑟 )/(𝑟 >)  and is also less than unity, 

according to the binomial series expansion definition, can be 

rewritten, as shown in Eq. (4): 
 

     ‖ ‖ = 1 + ∙ + ( ∙ ) ( ) +( ∙ ) ( ∙ )( ) + ⋯ . (4)
 

It is important to note that if the 𝑟 < 𝑟  condition is satis-

fied, the potential field relation provided by Eq. (4) is finally 

obtained under an azimuthally symmetrical charge distribution 

speculation [23–25]. This can be expressed by an integral form, 

as shown in Eq. (5): 
 𝜑(𝑟, 𝜃) =∑ 𝑟 𝑝 (𝑐𝑜𝑠𝜃) ( , )( ) 𝑝 (𝑐𝑜𝑠𝜃 )𝑑𝑉 . (5)
 

Note that 𝜑(𝑟, 𝜃) represents the electrostatic potential generat-

ed by a distributed charge at r and θ coordinate, 𝑝 (𝑐𝑜𝑠𝜃) is a 

Legendre polynomial of order n as a function of cos θ parameter, 𝜌(𝑟 , 𝜃 ) denotes a density function of azimuthally symmetrical 

charge distribution 𝑟 and 𝜃 coordinate, 𝑝 (𝑐𝑜𝑠𝜃 ) is a Legen-

dre polynomial of order n [29] corresponding to 𝑐𝑜𝑠𝜃 parameter, 

and 𝑣 signifies the volume of an azimuthally symmetrical 

charge distribution. The numerical orders of the Legendre poly-

nomial function are provided in Table 1. 

 
2. Determination of Electrostatic Potential Function 

In this section, we demonstrate how the electric potential 

function of a single ionic ring, illustrated in Fig. 2, is developed 

using Eq. (5).  

 
(a) (b) 

Fig. 1. (a) Electrostatic potential 𝜑(𝑟, 𝜃) at the point of interest 

generated by an azimuthally symmetrical charge distribu-

tion 𝜌(𝑟 , 𝜃 ). (b) Electrostatic potential 𝜑(𝑟, 𝜃) at the 

point of interest created by an ionic ring at radial distance r 

and inclination angle θ in the polar spherical coordinate, ‖𝑟 − 𝑟 ‖ = √𝑟 ∙ 𝑟 + 𝑟 ∙ 𝑟 − 2𝑟 ∙ 𝑟 , which results in Eq. (2).
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According to the system configuration, the ionic ring center 

is located above the origin in the z-axis direction, where the 

position under consideration at radial distance r is confined 

within the c value to ascertain that the 𝑟 < 𝑟  condition has 

been met. The azimuthally symmetrical charge distribution 

density function of a single ionic ring, per Fig. 2 in the polar 

spherical coordinate adapted from Hassani [34] and Wang [35], 

is given via Eq. (6) below, 
 𝜌(𝑟 , 𝜃 ) = 𝛿(𝑟 − 𝑐)𝛿(𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠𝛼), (6)
 

where K is a constant that we need to determine, and δ(u) repre-

sents a Dirac-delta function [29, 34, 35]. To find K, we integrate 

Eq. (6) over an ionic ring body to ensure that its integral value is 

equal to total charge 𝑄 via Eq. (7): 

𝑄 = 𝐾𝑐 𝛿(𝑟 − 𝑐)𝛿(𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠𝛼)𝑑𝑉       = 𝐾𝑐 𝛿(𝑟 − 𝑐)𝛿(𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠𝛼)𝑟 𝑑𝑟 𝑑𝑐𝑜𝑠𝜃 𝑑∅       = 𝐾𝑐 𝑑∅ 𝛿(𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠𝛼)𝑑𝑐𝑜𝑠𝜃 𝑟 𝛿(𝑟 − 𝑐)𝑑𝑟 )= 𝐾2𝜋𝑐, (7)
 

where 𝐾 = . Therefore, the electric potential function using 

Eq. (5) can be rewritten, as shown in Eq. (8): 
 𝜑 (𝑟, 𝜃) =∑ 𝑟 𝑃 (𝑐𝑜𝑠𝜃) 𝑑∅ 𝑃 (𝑐𝑜𝑠𝜃 )𝛿(𝑐𝑜𝑠𝜃 −𝑐𝑜𝑠𝛼)𝑑𝑐𝑜𝑠𝜃 ( ) 𝑑𝑟 , (8)
 

where 𝜑 (𝑟, 𝜃) represents the electrostatic potential of the 

ionic ring shown in Fig. 2 at 𝑟 , 𝜃 coordinate, 𝑄 denotes the 

total charge of an ionic ring under the uniform charge distribution 

assumption, and 𝜀  signifies the vacuum electric permittivity 

parameter, which can be rewritten, as shown in Eq. (9): 
 𝜑 (𝑟, 𝜃) = ∑ 𝑃 (𝑐𝑜𝑠𝛼)𝑃 (𝑐𝑜𝑠𝜃). (9)
 

It is noteworthy that Eq. (9) is legitimate if the position un-

der consideration is not greater than the c value, r < c, as shown 

in Fig. 2, which enables us to conveniently analyze and study 

the electrostatic potential field near the origin’s location. In the 

next section, we develop a one-dimensional equation of motion 

for a trapped ion confined in a non-uniform electrostatic field 

generated by two ionic rings, based on Eq. (9), to investigate 

how a trapped ion behaves in this field when restricted to one 

dimension. 

III. MOTION OF A TRAPPED ION IN A NON-UNIFORM 

ELECTROSTATIC FIELD 

In this section, our objective is to develop the equation of 

motion of a trapped ion in a non-uniform electrostatic field 

generated by two ionic rings, based on Eq. (9), from the simplest 

perspective, a one-dimensional study. This equation of motion 

provides us with an opportunity to more conveniently investigate 

the behavior of a trapped ion in an electrostatic field generated 

by two rings. To achieve this objective, first, we must determine 

the electrostatic field generated by two rings with a common 

centerline, as shown in Fig. 3(a). Although the centerlines of 

both rings have a common axis, the axis of ionic ring 1 points to 

the z1 direction, whereas that of ring 2 points to the z2 direction, 

as shown in Fig. 3(b). Nonetheless, the electrostatic field generated 

by each ring is still based on Eq. (9), with a different parameter 

setting. The electrostatic functional form of each ionic ring can 

be provided using Eq. (10): 

Table 1. The first five Legendre polynomials 

n Legendre polynomial 𝑃 (x) 

0 𝑃  = 1 

1 𝑃  = 𝑥 

2 𝑃  = 12 (3𝑥 − 1) 

3a 𝑃  = 15 (5𝑥 − 3𝑥) 

4a 𝑃  = 18 (35𝑥 − 30𝑥 + 3) 

aThese terms are omitted in this study as the small motion speculation 

has been made to develop the equation of motion for a trapped ion 

where the nonlinear effect is negligible. Eq. (5) is solely valid if the r < rI 

condition has been met; otherwise, the electrostatic potential formula-

tion will differ from Eq. (5). However, it can be found in Schwartz’s 

work [23], where the r > rI condition is fulfilled, but it is beyond the 

scope of this study. An example of a single ionic ring under the azimuthal 

symmetry assumption is illustrated in Fig. 1(b). The electrostatic 

potential function determination for a single ionic ring is fully dis-

cussed in detail in the next section. 
 

 
Fig. 2. Electrostatic potential 𝜑 (𝑟, 𝜃) at the point of interest cre-

ated by an ionic ring with radius a, r < c. 



EM-UDOM and JAISUMROUM: AN INVESTIGATION OF HARMONIC OSCILLATION OF AN ION PARTICLE IN A NON-UNIFORM ELECTROSTATIC FIELD  

393 

  
 

𝜑 𝑧, 𝜃 =∑ 𝑃 (𝑐𝑜𝑠𝛼)𝑃 (𝑐𝑜𝑠𝜃 ), 
(10)

 

where 𝜑 𝑧, 𝜃  and 𝜃  represent the electrostatic field 

function and the inclination angle of the ring, respectively. Ac-

cording to Fig. 3(b), 𝜃 = 0 𝑎𝑛𝑑 𝜃 = 𝜋 if the positive sign 

pointing to the 𝑧  direction is specified. 
 𝜑 (𝓏, 0) =∑ 𝓏 𝑃 𝑃 (1). 

(11)

The electrostatic potential for ring 2 can be provided using 

Eq. (12): 
 𝜑 (𝓏, 𝜋) =∑ 𝓏 𝑃 𝑃 (−1). 

(12)
 

To determine the total electrostatic potential generated by 

both ionic rings, we use the superposition principle to determine 

its functional form, 𝜑 (𝓏): 
 𝜑 (𝓏) =∑ 𝑃 𝑃 (1) + 𝑃 (−1) .

(13)
 

If we neglect higher-order expansion terms due to the small 

motion speculation in the vicinity of the origin point and focus 

only on n = 0, 1, 2 orders, where all expansion terms after n = 3 

are not considered, Eq. (13) becomes Eq. (14): 

Φ (𝓏) 𝑄4𝜋𝜀 2((𝑙 2) + 𝑎 ) ⁄ + 2(𝑙 2) − 𝑎((𝑙 2) + 𝑎) ⁄ ∙ 𝓏 (14)
 

Where Φ (𝓏) represents the approximated quadratic elec-

trostatic potential function generated by two common centerline 

ionic rings, per Fig. 3, where the higher-order expansion terms 

after n = 2 are truncated. It is important to note that P0(x) = 1, 

P2(x) = (3x2
 - 1)/2 per Table 1, and P1(1) + P1(1) = 0 condition 

have been employed to obtain Eq. (14), based on Eq. (13). To 

develop the equation of motion of an ion particle in the z direction 

in the non-uniform electrostatic field using Eq. (13), we assume the 

idea of a hypothetical tube, an imaginary tube shown in Fig. 3(a), 

to limit the motion of an ion particle in one dimension and im-

plement the Lagrangian definition [27, 28], where ℒ(𝓏, 𝓏) =𝑇(𝓏) − 𝛷 (𝓏), to derive a one-dimensional equation of mo-

tion based on Lagrangian mechanics, as defined in Eq. (15): 
 

    
ℒ𝓏 = ℒ𝓏 , 𝑇(𝓏) = 𝑚𝓏 . (15)

 

Based on Eq. (14), we can derive the equation of motion of a 

charged particle in the z direction, per Lagrangian mechanics, as 

shown in Eq. (15). Therefore, the equation of motion of this 

charged particle in a non-uniform electrostatic field generated 

by two ionic rings becomes Eq. (16): 
 

    𝑚𝓏 + ∙ ( ) ⁄ 𝓏 = 0, 
(16)

 

where 𝜀 = 8.854 10  F/m, the electric permittivity in a 

vacuum in the SI unit, and 𝑞 = 1.6 10  C, the electrical 

charge of an ion in the SI unit. Eq. (16) represents the linear 

second-order differential equation that can exhibit a harmonic 

motion if appropriate parameters have been set up to ensure that 

the stability condition has been satisfied, that is, l > 2a. If the 

stability condition is met, the time interval of harmonic motion 

based on Eq. (16) is provided using Eq. (17): 
 

    𝑇 = ( ) + 𝑎 ⁄
. (17)

 

IV. METHODOLOGY 

We divide our investigation into two parts. In the first part, 

we aim to demonstrate that a trapped ion can be confined and 

can exhibit harmonic motion in one dimension in a non-

uniform electrostatic field generated by two ionic rings. We use 

the numerical solver, ode45 MATLAB function, to solve Eq. 

(16), to show that the periodic motion of a trapped ion is observed, 

where initial displacement 𝓏(0) = 0.018 m, and initial velocity 𝓏(0) = 0 m/s are used to run our simulation. We specifically 

examine how the magnitude of the electrical charge of each ring, 

represented by ζ = 𝑄/𝑞 parameter, significantly influences ion 

(a) 

(b) 

Fig. 3. (a) Schematic of a trapped ion confined in a non-uniform 

electrostatic field generated by two ionic rings; the imaginary 

tube is proposed to restrict the motion of a trapped ion in 

one dimension. (b) All related parameters and the coordinate 

orientation required to determine the electrostatic field in the 

z direction induced by two ionic rings, as well as the elec-

trostatic potential for ring 1, can be given, using Eq. (11).
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particle displacement responses. Additionally, the effect of an 

ion ring size, represented by ring radius a, on the time interval of 

the oscillation has been thoroughly studied. All parameters used 

to run the simulation in this part are provided in Table 2. In the 

second part of our investigation, we focus on studying the impact 

of ζ = 𝑄/𝑞 parameter, the magnitude of the electrical charge of 

each ring, on velocity response, as well as how its maximum ve-

locity amplitudes are influenced by the ring size, represented by 

ring radius a. All parameter settings in this part are also listed in 

Table 2. 

V. RESULTS AND DISCUSSION 

1. Displacement Responses and Time Interval 

In the first part, we have attempted to verify that a trapped 

ion in a non-uniform electrostatic field generated by two ionic 

rings with a common centerline, as illustrated in Fig. 3 is able to 

exhibit the harmonic motion calculated using Eq. (16). Thus, to 

conduct numerical studies in this part, all parameters have been 

set up per the information provided in Table 2, and the numeri-

cal results are illustrated in Fig. 4. According to the simulation 

results shown in Fig. 4(a), we notice that a trapped ion can ex-

hibit oscillatory motion in a non-uniform electrostatic field gen-

erated by two ionic rings, as expected, because the motion of a 

trapped ion is apparently able to demonstrate periodic motion 

patterns between two rings for every testing parameter condition, 

where ζ = 1, 5, and 10. To verify the stability of these periodic 

motions, we establish the phase trajectory plots, as illustrated in 

Fig. 5, where all setting parameters are provided in Table 2, to 

ascertain whether the system has stable periodic motions. Based 

on the phase portrait, we discover that all phase trajectories, ζ = 

1, 5, and 10, exhibit an elliptical motion around the equilibrium 

position at the point of origin without asymptotically stable and 

unstable evidence, indicating that all trajectories respond in a 

neutrally stable manner. These simulation results confirm the 

prospect of confining an ion particle in a non-uniform elec-

trostatic field generated by two ionic rings, based on a one-

dimensional speculation. 
We also observe that the time interval of oscillation, T, highly 

depends on the magnitude of the electrical charge, represented 

by ζ parameter. In Fig. 4(a), it is noticeable that the time interval 

of oscillation of an ion particle tends to decrease when the ζ 

parameter value increases, indicating that the system will oscillate 

at a higher frequency rate if the electrical charge in each ring has 

greater concentration. We investigate this observation in detail 

to determine how significantly the electrical charge concentration 

in an ionic ring influences the time interval of oscillation, per 

Fig. 4(b), where ζ parameter ranges from 1 to 10. As a result, 

we observe that the time interval of oscillation, T, is remarkably 

influenced by ζ parameter, the magnitude of electrical charge in 

each ring. Specifically, the time interval of oscillation decreases 

when ζ parameter tends to increase, as expected, which confirms 

our belief that a trapped ion will respond at a higher frequency 

at an elevated electrical charge concentration. Lastly, we also 

find that the time interval of oscillation is considerably dependent 

on the ring size, represented by ring radius a—that is, an ion 

particle oscillates at a higher frequency and a shorter time inter-

val when the ring size becomes smaller, as shown in Fig. 4(b). 

 
Fig. 5 Influence of charge ratio ζ on the phase space plot showing 

the phase trajectories of a trapped ion in a non-uniform 

electrostatic field created by two ionic rings at ζ = 1, 5, and 

10, with a = 0.03 m, where time t is in seconds, displace-

ment 𝓏(𝑡) is in meters, and velocity 𝓏(𝑡) is in m/s. Note 

that m = 6.64 ×10−27 kg (the mass of one helium ion) and l 

= 0.09 m (the distance between ionic rings) are set in all 

simulations.

Table 2. Case studies of dynamic responses and other parametric studies

Case 
Dynamic responses  Parametric studies𝜁  𝑙  𝑎   𝜁  𝑙 𝑎

1 1 0.09 0.03  1–10 0.09 0.01

2 5 0.09 0.03  1–10 0.09 0.02

3 10 0.09 0.03  1–10 0.09 0.03𝑙 represents the distance between two ionic rings; 𝑎 denotes a ring’s radius. 
 

 
(a) (b) 

Fig. 4 Influence of charge ratio ζ on the free responses and the 

time interval of oscillation of a trapped ion in a non-

uniform electrostatic field created by two ionic rings. (a) 

Free responses of a trapped ion in a one-dimensional motion 

in the z direction at ζ = 1, 5, and 10, with a = 0.03 m, 

where time t is in seconds and displacement 𝓏(𝑡) is in meters. 

(b) Time interval of oscillation, T in seconds, at various 

charge ratio values, ζ ranging from 1 to 10 at a = 0.01, 0.02, 

and 0.03 m. Note that m = 6.64 × 10−27 kg (the mass of 

one helium ion) and l = 0.09 m (the distance between ionic 

rings) are set in all simulations.
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2. Velocity Responses based on Changes in Charge Ratio 

In this part, we investigate how the velocity responses of an 

ion particle in a non-uniform electrostatic field generated by 

two ionic rings (Fig. 3) differ if ζ parameter, the magnitude of 

the electrical charge of each ionic ring, has been altered, per the 

data provided in Table 2. The simulation results discussed in this 

part are shown in Fig. 6. In Fig. 6(a), we observe that the velocity 

responses of a trapped ion highly depend on ζ parameter, where 

ζ = 1, 5, and 10 are used in our study, per the information in 

Table 2. Regarding the simulation results, it is quite clear that 

not only does ζ parameter affect the time interval of oscillation 

of a trapped ion, as discussed earlier, but also has a considerable 

effect on the amplitude of velocity responses—that is, the ampli-

tude will significantly rise if the magnitude of the electrical 

charge in each ring becomes higher. To validate the observation 

in detail, it can be confirmed through another numerical experi-

ment, as shown in Fig. 6(b), where the velocity amplitude of ion 

oscillation noticeably increases when ζ parameter rises, based on 

the latter value ranging from 1 to 10. This indicates that an ion 

particle in a non-uniform electrostatic field is likely to oscillate 

at a higher velocity when the magnitude of the electrical charge 

in each ring becomes more concentrated. Another interesting 

observation is the effect of the ring size, represented by ring radius 

a, on the velocity amplitude of oscillation, which tends to in-

crease if ring radius a becomes smaller, as illustrated in Fig. 6(b). 

VI. CONCLUSION 

In this work, we investigate and analyze the possibility to trap 

an ion particle in a non-uniform electrostatic field produced by 

two ionic rings with a common centerline. In our study, a 

trapped ion is limited to moving in a one-dimensional direction 

by introducing the hypothetical tube (imaginary tube) to assume 

that the motion of an ion particle within the tube moves in a 

one-dimensional direction. To develop the equation of motion 

of an ion particle, we first derive the electrostatic field generated 

by two ionic rings by employing the multipole expansion tech-

nique under the azimuthally symmetrical charge distribution 

assumption, where the higher-order expansion terms of Legendre 

polynomials after order n = 3 are negligible due to the small 

amplitude oscillation speculation. Then, the equation of motion 

of an ion particle is developed by means of the Lagrangian for-

mulation. According to the numerical study, the displacement 

responses of an ionic particle can exhibit a stable periodic motion, 

verified by displacement responses and phase trajectory plots, 

which cements the prospect to trap an ion by a proposed electro-

static field within a stability parametric setting, l > 2a. Additionally, 

we find that the magnitude of the electrical charge of each ring 

and the ring radius, representing the ring size, significantly influ-

ence the frequency and velocity amplitude of the ion oscillation, 

where an ion particle tends to oscillate at a higher frequency if 

the charge concentration is greater, but the ring size becomes 

smaller. We also notice that the velocity amplitude of ion particle 

oscillation tends to rise when the charge concentration increases, 

while the ring radius decreases. In future work, we will extend 

our study to a three-dimensional case to gain more insights and 

discover the realistic behavior of a trapped ion in a non-uniform 

electrostatic field, which might lead to the development of the 

experimental prototyping. 
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